Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs
We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2024/06/01, Vol.E107.D(6), pp.732-740 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 740 |
---|---|
container_issue | 6 |
container_start_page | 732 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E107.D |
creator | KAWAKAMI, Yuki TAKAHASHI, Shun SETO, Kazuhisa HORIYAMA, Takashi KOBAYASHI, Yuki HIGASHIKAWA, Yuya KATOH, Naoki |
description | We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0 in cases (k, ℓ)=(2, 3) and (2, 2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k, ℓ)=(2, 3), it also works for different ℓ. |
doi_str_mv | 10.1587/transinf.2023EDP7214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3080098631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080098631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-e2dbb98c19a4d9bb907b36d525f3bcace00d20cdf78759106c14cc6fe5f1d853</originalsourceid><addsrcrecordid>eNpNUMlOwzAQtRBIlMIfcLDEBSRSbGc_QhsKUliEInG0HC9JSuMUOxHiA_hv0oaWnmb05i2aB8A5RhPsR-FNa5i2lVYTgoibzF5Dgr0DMMKh5zvYDfAhGKEYB07ku-QYnFi7QAhHBPsj8JM2X9LAu6bTwkLVGNiWEmZlxT-0tBYyLQakadkSPnd13rMbBRNRSDg1je1zC7tBOr6shGQaPlW6qrsavsuqKFuYsroH54atysHvklyTKyfbHAf4FBwptrTy7G-OQXafZNMHJ32ZP05vU4d7IWkdSUSexxHHMfNE3K8ozN1A-MRXbs4ZlwgJgrhQYRT6MUYBxx7ngZK-wqJ_fgwuBtuVaT47aVu6aDqj-0TqogihOApc3LO8gcXX7xmp6MpUNTPfFCO67ptu-6Z7ffeyt0G2sC0r5E7ETFvxpfwXJRiFdEaD7bJnsiPzkhkqtfsLmQ6TNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080098631</pqid></control><display><type>article</type><title>Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>KAWAKAMI, Yuki ; TAKAHASHI, Shun ; SETO, Kazuhisa ; HORIYAMA, Takashi ; KOBAYASHI, Yuki ; HIGASHIKAWA, Yuya ; KATOH, Naoki</creator><creatorcontrib>KAWAKAMI, Yuki ; TAKAHASHI, Shun ; SETO, Kazuhisa ; HORIYAMA, Takashi ; KOBAYASHI, Yuki ; HIGASHIKAWA, Yuya ; KATOH, Naoki</creatorcontrib><description>We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0 in cases (k, ℓ)=(2, 3) and (2, 2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k, ℓ)=(2, 3), it also works for different ℓ.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2023EDP7214</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>(k, ℓ)-tight graph ; geometric thickness ; Graphs ; k-planarity ; Laman graph ; Lower bounds ; Minimum weight ; sparse graph ; Thickness</subject><ispartof>IEICE Transactions on Information and Systems, 2024/06/01, Vol.E107.D(6), pp.732-740</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c472t-e2dbb98c19a4d9bb907b36d525f3bcace00d20cdf78759106c14cc6fe5f1d853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>KAWAKAMI, Yuki</creatorcontrib><creatorcontrib>TAKAHASHI, Shun</creatorcontrib><creatorcontrib>SETO, Kazuhisa</creatorcontrib><creatorcontrib>HORIYAMA, Takashi</creatorcontrib><creatorcontrib>KOBAYASHI, Yuki</creatorcontrib><creatorcontrib>HIGASHIKAWA, Yuya</creatorcontrib><creatorcontrib>KATOH, Naoki</creatorcontrib><title>Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0 in cases (k, ℓ)=(2, 3) and (2, 2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k, ℓ)=(2, 3), it also works for different ℓ.</description><subject>(k, ℓ)-tight graph</subject><subject>geometric thickness</subject><subject>Graphs</subject><subject>k-planarity</subject><subject>Laman graph</subject><subject>Lower bounds</subject><subject>Minimum weight</subject><subject>sparse graph</subject><subject>Thickness</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUMlOwzAQtRBIlMIfcLDEBSRSbGc_QhsKUliEInG0HC9JSuMUOxHiA_hv0oaWnmb05i2aB8A5RhPsR-FNa5i2lVYTgoibzF5Dgr0DMMKh5zvYDfAhGKEYB07ku-QYnFi7QAhHBPsj8JM2X9LAu6bTwkLVGNiWEmZlxT-0tBYyLQakadkSPnd13rMbBRNRSDg1je1zC7tBOr6shGQaPlW6qrsavsuqKFuYsroH54atysHvklyTKyfbHAf4FBwptrTy7G-OQXafZNMHJ32ZP05vU4d7IWkdSUSexxHHMfNE3K8ozN1A-MRXbs4ZlwgJgrhQYRT6MUYBxx7ngZK-wqJ_fgwuBtuVaT47aVu6aDqj-0TqogihOApc3LO8gcXX7xmp6MpUNTPfFCO67ptu-6Z7ffeyt0G2sC0r5E7ETFvxpfwXJRiFdEaD7bJnsiPzkhkqtfsLmQ6TNw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>KAWAKAMI, Yuki</creator><creator>TAKAHASHI, Shun</creator><creator>SETO, Kazuhisa</creator><creator>HORIYAMA, Takashi</creator><creator>KOBAYASHI, Yuki</creator><creator>HIGASHIKAWA, Yuya</creator><creator>KATOH, Naoki</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240601</creationdate><title>Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs</title><author>KAWAKAMI, Yuki ; TAKAHASHI, Shun ; SETO, Kazuhisa ; HORIYAMA, Takashi ; KOBAYASHI, Yuki ; HIGASHIKAWA, Yuya ; KATOH, Naoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-e2dbb98c19a4d9bb907b36d525f3bcace00d20cdf78759106c14cc6fe5f1d853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>(k, ℓ)-tight graph</topic><topic>geometric thickness</topic><topic>Graphs</topic><topic>k-planarity</topic><topic>Laman graph</topic><topic>Lower bounds</topic><topic>Minimum weight</topic><topic>sparse graph</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KAWAKAMI, Yuki</creatorcontrib><creatorcontrib>TAKAHASHI, Shun</creatorcontrib><creatorcontrib>SETO, Kazuhisa</creatorcontrib><creatorcontrib>HORIYAMA, Takashi</creatorcontrib><creatorcontrib>KOBAYASHI, Yuki</creatorcontrib><creatorcontrib>HIGASHIKAWA, Yuya</creatorcontrib><creatorcontrib>KATOH, Naoki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KAWAKAMI, Yuki</au><au>TAKAHASHI, Shun</au><au>SETO, Kazuhisa</au><au>HORIYAMA, Takashi</au><au>KOBAYASHI, Yuki</au><au>HIGASHIKAWA, Yuya</au><au>KATOH, Naoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>E107.D</volume><issue>6</issue><spage>732</spage><epage>740</epage><pages>732-740</pages><artnum>2023EDP7214</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0 in cases (k, ℓ)=(2, 3) and (2, 2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k, ℓ)=(2, 3), it also works for different ℓ.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2023EDP7214</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2024/06/01, Vol.E107.D(6), pp.732-740 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_3080098631 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | (k, ℓ)-tight graph geometric thickness Graphs k-planarity Laman graph Lower bounds Minimum weight sparse graph Thickness |
title | Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20Bounds%20for%20the%20Thickness%20and%20the%20Total%20Number%20of%20Edge%20Crossings%20of%20Euclidean%20Minimum%20Weight%20Laman%20Graphs%20and%20(2,2)-Tight%20Graphs&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=KAWAKAMI,%20Yuki&rft.date=2024-06-01&rft.volume=E107.D&rft.issue=6&rft.spage=732&rft.epage=740&rft.pages=732-740&rft.artnum=2023EDP7214&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2023EDP7214&rft_dat=%3Cproquest_cross%3E3080098631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080098631&rft_id=info:pmid/&rfr_iscdi=true |