Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs

We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2024/06/01, Vol.E107.D(6), pp.732-740
Hauptverfasser: KAWAKAMI, Yuki, TAKAHASHI, Shun, SETO, Kazuhisa, HORIYAMA, Takashi, KOBAYASHI, Yuki, HIGASHIKAWA, Yuya, KATOH, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740
container_issue 6
container_start_page 732
container_title IEICE Transactions on Information and Systems
container_volume E107.D
creator KAWAKAMI, Yuki
TAKAHASHI, Shun
SETO, Kazuhisa
HORIYAMA, Takashi
KOBAYASHI, Yuki
HIGASHIKAWA, Yuya
KATOH, Naoki
description We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0 in cases (k, ℓ)=(2, 3) and (2, 2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k, ℓ)=(2, 3), it also works for different ℓ.
doi_str_mv 10.1587/transinf.2023EDP7214
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3080098631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080098631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-e2dbb98c19a4d9bb907b36d525f3bcace00d20cdf78759106c14cc6fe5f1d853</originalsourceid><addsrcrecordid>eNpNUMlOwzAQtRBIlMIfcLDEBSRSbGc_QhsKUliEInG0HC9JSuMUOxHiA_hv0oaWnmb05i2aB8A5RhPsR-FNa5i2lVYTgoibzF5Dgr0DMMKh5zvYDfAhGKEYB07ku-QYnFi7QAhHBPsj8JM2X9LAu6bTwkLVGNiWEmZlxT-0tBYyLQakadkSPnd13rMbBRNRSDg1je1zC7tBOr6shGQaPlW6qrsavsuqKFuYsroH54atysHvklyTKyfbHAf4FBwptrTy7G-OQXafZNMHJ32ZP05vU4d7IWkdSUSexxHHMfNE3K8ozN1A-MRXbs4ZlwgJgrhQYRT6MUYBxx7ngZK-wqJ_fgwuBtuVaT47aVu6aDqj-0TqogihOApc3LO8gcXX7xmp6MpUNTPfFCO67ptu-6Z7ffeyt0G2sC0r5E7ETFvxpfwXJRiFdEaD7bJnsiPzkhkqtfsLmQ6TNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080098631</pqid></control><display><type>article</type><title>Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>KAWAKAMI, Yuki ; TAKAHASHI, Shun ; SETO, Kazuhisa ; HORIYAMA, Takashi ; KOBAYASHI, Yuki ; HIGASHIKAWA, Yuya ; KATOH, Naoki</creator><creatorcontrib>KAWAKAMI, Yuki ; TAKAHASHI, Shun ; SETO, Kazuhisa ; HORIYAMA, Takashi ; KOBAYASHI, Yuki ; HIGASHIKAWA, Yuya ; KATOH, Naoki</creatorcontrib><description>We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε&gt;0 in cases (k, ℓ)=(2, 3) and (2, 2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k, ℓ)=(2, 3), it also works for different ℓ.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2023EDP7214</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>(k, ℓ)-tight graph ; geometric thickness ; Graphs ; k-planarity ; Laman graph ; Lower bounds ; Minimum weight ; sparse graph ; Thickness</subject><ispartof>IEICE Transactions on Information and Systems, 2024/06/01, Vol.E107.D(6), pp.732-740</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c472t-e2dbb98c19a4d9bb907b36d525f3bcace00d20cdf78759106c14cc6fe5f1d853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>KAWAKAMI, Yuki</creatorcontrib><creatorcontrib>TAKAHASHI, Shun</creatorcontrib><creatorcontrib>SETO, Kazuhisa</creatorcontrib><creatorcontrib>HORIYAMA, Takashi</creatorcontrib><creatorcontrib>KOBAYASHI, Yuki</creatorcontrib><creatorcontrib>HIGASHIKAWA, Yuya</creatorcontrib><creatorcontrib>KATOH, Naoki</creatorcontrib><title>Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε&gt;0 in cases (k, ℓ)=(2, 3) and (2, 2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k, ℓ)=(2, 3), it also works for different ℓ.</description><subject>(k, ℓ)-tight graph</subject><subject>geometric thickness</subject><subject>Graphs</subject><subject>k-planarity</subject><subject>Laman graph</subject><subject>Lower bounds</subject><subject>Minimum weight</subject><subject>sparse graph</subject><subject>Thickness</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUMlOwzAQtRBIlMIfcLDEBSRSbGc_QhsKUliEInG0HC9JSuMUOxHiA_hv0oaWnmb05i2aB8A5RhPsR-FNa5i2lVYTgoibzF5Dgr0DMMKh5zvYDfAhGKEYB07ku-QYnFi7QAhHBPsj8JM2X9LAu6bTwkLVGNiWEmZlxT-0tBYyLQakadkSPnd13rMbBRNRSDg1je1zC7tBOr6shGQaPlW6qrsavsuqKFuYsroH54atysHvklyTKyfbHAf4FBwptrTy7G-OQXafZNMHJ32ZP05vU4d7IWkdSUSexxHHMfNE3K8ozN1A-MRXbs4ZlwgJgrhQYRT6MUYBxx7ngZK-wqJ_fgwuBtuVaT47aVu6aDqj-0TqogihOApc3LO8gcXX7xmp6MpUNTPfFCO67ptu-6Z7ffeyt0G2sC0r5E7ETFvxpfwXJRiFdEaD7bJnsiPzkhkqtfsLmQ6TNw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>KAWAKAMI, Yuki</creator><creator>TAKAHASHI, Shun</creator><creator>SETO, Kazuhisa</creator><creator>HORIYAMA, Takashi</creator><creator>KOBAYASHI, Yuki</creator><creator>HIGASHIKAWA, Yuya</creator><creator>KATOH, Naoki</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240601</creationdate><title>Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs</title><author>KAWAKAMI, Yuki ; TAKAHASHI, Shun ; SETO, Kazuhisa ; HORIYAMA, Takashi ; KOBAYASHI, Yuki ; HIGASHIKAWA, Yuya ; KATOH, Naoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-e2dbb98c19a4d9bb907b36d525f3bcace00d20cdf78759106c14cc6fe5f1d853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>(k, ℓ)-tight graph</topic><topic>geometric thickness</topic><topic>Graphs</topic><topic>k-planarity</topic><topic>Laman graph</topic><topic>Lower bounds</topic><topic>Minimum weight</topic><topic>sparse graph</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KAWAKAMI, Yuki</creatorcontrib><creatorcontrib>TAKAHASHI, Shun</creatorcontrib><creatorcontrib>SETO, Kazuhisa</creatorcontrib><creatorcontrib>HORIYAMA, Takashi</creatorcontrib><creatorcontrib>KOBAYASHI, Yuki</creatorcontrib><creatorcontrib>HIGASHIKAWA, Yuya</creatorcontrib><creatorcontrib>KATOH, Naoki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KAWAKAMI, Yuki</au><au>TAKAHASHI, Shun</au><au>SETO, Kazuhisa</au><au>HORIYAMA, Takashi</au><au>KOBAYASHI, Yuki</au><au>HIGASHIKAWA, Yuya</au><au>KATOH, Naoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>E107.D</volume><issue>6</issue><spage>732</spage><epage>740</epage><pages>732-740</pages><artnum>2023EDP7214</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε&gt;0 in cases (k, ℓ)=(2, 3) and (2, 2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k, ℓ)=(2, 3), it also works for different ℓ.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2023EDP7214</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2024/06/01, Vol.E107.D(6), pp.732-740
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_journals_3080098631
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects (k, ℓ)-tight graph
geometric thickness
Graphs
k-planarity
Laman graph
Lower bounds
Minimum weight
sparse graph
Thickness
title Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20Bounds%20for%20the%20Thickness%20and%20the%20Total%20Number%20of%20Edge%20Crossings%20of%20Euclidean%20Minimum%20Weight%20Laman%20Graphs%20and%20(2,2)-Tight%20Graphs&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=KAWAKAMI,%20Yuki&rft.date=2024-06-01&rft.volume=E107.D&rft.issue=6&rft.spage=732&rft.epage=740&rft.pages=732-740&rft.artnum=2023EDP7214&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2023EDP7214&rft_dat=%3Cproquest_cross%3E3080098631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080098631&rft_id=info:pmid/&rfr_iscdi=true