Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs

We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2024/06/01, Vol.E107.D(6), pp.732-740
Hauptverfasser: KAWAKAMI, Yuki, TAKAHASHI, Shun, SETO, Kazuhisa, HORIYAMA, Takashi, KOBAYASHI, Yuki, HIGASHIKAWA, Yuya, KATOH, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0 in cases (k, ℓ)=(2, 3) and (2, 2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k, ℓ)=(2, 3), it also works for different ℓ.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2023EDP7214