Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs
We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2024/06/01, Vol.E107.D(6), pp.732-740 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε>0 in cases (k, ℓ)=(2, 3) and (2, 2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k, ℓ)=(2, 3), it also works for different ℓ. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2023EDP7214 |