Photon upconversion assisted ferroelectric photovoltaics: Device configuration with multifaceted influence in augmenting the photovoltaic response of BiFeO3 thin‐film solar cells
This work presents a novel paradigm for upconversion‐assisted ferroelectric photovoltaic devices. The system comprises a ferroelectric active layer (BiFeO3), an upconverter layer (Yb; Er‐doped ZnO), a conductive ITO‐coated glass substrate, and a reflective coating (Al) at the rear end of the glass s...
Gespeichert in:
Veröffentlicht in: | Progress in photovoltaics 2024-08, Vol.32 (8), p.556-568 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents a novel paradigm for upconversion‐assisted ferroelectric photovoltaic devices. The system comprises a ferroelectric active layer (BiFeO3), an upconverter layer (Yb; Er‐doped ZnO), a conductive ITO‐coated glass substrate, and a reflective coating (Al) at the rear end of the glass substrate. The photovoltaic efficiency of the single‐layer BFO was found to be 0.71%. With the prescribed device model, the total solar efficiency of BiFeO3 improved significantly and touched solar conversion efficiency of 2.21%. This model's projection widens the future perspectives of device performance in emerging photovoltaic technology, mainly perovskite‐based solar cells.
This work presents a novel paradigm for upconversion‐assisted ferroelectric photovoltaic devices. Heterojunction systems like this one have a multifaceted impact on the overall device performance and photovoltaic efficiency by a significant amount. |
---|---|
ISSN: | 1062-7995 1099-159X |
DOI: | 10.1002/pip.3793 |