Deep Learning Techniques for Crater Detection on Lunar Surface Images from Chandrayaan-2 Satellite

Lunar exploration is pivotal in establishing a human presence on the Moon, and lunar crater detection plays a major role in this pursuit. The study is divided into two key phases: the creation of a specialized annotated dataset sourced from the Optical High-Resolution Camera on the Chandrayaan-2 sat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2024-08, Vol.52 (8), p.1717-1728
Hauptverfasser: Raju, Sanjay, Nandakishor, S., Vivek, Sreerag K., Don, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lunar exploration is pivotal in establishing a human presence on the Moon, and lunar crater detection plays a major role in this pursuit. The study is divided into two key phases: the creation of a specialized annotated dataset sourced from the Optical High-Resolution Camera on the Chandrayaan-2 satellite, and the evaluation of model performance using this dataset. Employing models such as FasterRCNN, YoloV5, and YoloV1, the investigation reveals the YoloV5 model’s superiority, achieving a precision of 92% and a recall of 83% for lunar crater detection. This finding constitutes a significant contribution to lunar exploration research.
ISSN:0255-660X
0974-3006
DOI:10.1007/s12524-024-01909-y