Deep Learning Techniques for Crater Detection on Lunar Surface Images from Chandrayaan-2 Satellite
Lunar exploration is pivotal in establishing a human presence on the Moon, and lunar crater detection plays a major role in this pursuit. The study is divided into two key phases: the creation of a specialized annotated dataset sourced from the Optical High-Resolution Camera on the Chandrayaan-2 sat...
Gespeichert in:
Veröffentlicht in: | Journal of the Indian Society of Remote Sensing 2024-08, Vol.52 (8), p.1717-1728 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lunar exploration is pivotal in establishing a human presence on the Moon, and lunar crater detection plays a major role in this pursuit. The study is divided into two key phases: the creation of a specialized annotated dataset sourced from the Optical High-Resolution Camera on the Chandrayaan-2 satellite, and the evaluation of model performance using this dataset. Employing models such as FasterRCNN, YoloV5, and YoloV1, the investigation reveals the YoloV5 model’s superiority, achieving a precision of 92% and a recall of 83% for lunar crater detection. This finding constitutes a significant contribution to lunar exploration research. |
---|---|
ISSN: | 0255-660X 0974-3006 |
DOI: | 10.1007/s12524-024-01909-y |