Kannappan–Wilson and Van Vleck–Wilson functional equations on semigroups

Let S be a semigroup, Z ( S ) the center of S and σ : S → S is an involutive automorphism. Our main results is that we describe the solutions of the Kannappan-Wilson functional equation ∫ S f ( x y t ) d μ ( t ) + ∫ S f ( σ ( y ) x t ) d μ ( t ) = 2 f ( x ) g ( y ) , x , y ∈ S , and the Van Vleck-Wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2024, Vol.173 (1), p.193-213
Hauptverfasser: Aserrar, Y., Elqorachi, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S be a semigroup, Z ( S ) the center of S and σ : S → S is an involutive automorphism. Our main results is that we describe the solutions of the Kannappan-Wilson functional equation ∫ S f ( x y t ) d μ ( t ) + ∫ S f ( σ ( y ) x t ) d μ ( t ) = 2 f ( x ) g ( y ) , x , y ∈ S , and the Van Vleck-Wilson functional equation ∫ S f ( x y t ) d μ ( t ) - ∫ S f ( σ ( y ) x t ) d μ ( t ) = 2 f ( x ) g ( y ) , x , y ∈ S , where μ is a measure that is a linear combination of Dirac measures ( δ z i ) i ∈ I , such that z i ∈ Z ( S ) for all i ∈ I . Interesting consequences of these results are presented.
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-024-01433-y