Kannappan–Wilson and Van Vleck–Wilson functional equations on semigroups
Let S be a semigroup, Z ( S ) the center of S and σ : S → S is an involutive automorphism. Our main results is that we describe the solutions of the Kannappan-Wilson functional equation ∫ S f ( x y t ) d μ ( t ) + ∫ S f ( σ ( y ) x t ) d μ ( t ) = 2 f ( x ) g ( y ) , x , y ∈ S , and the Van Vleck-Wi...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2024, Vol.173 (1), p.193-213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
S
be a semigroup,
Z
(
S
)
the center of
S
and
σ
:
S
→
S
is an involutive automorphism. Our main results is that we describe the solutions of the Kannappan-Wilson functional equation
∫
S
f
(
x
y
t
)
d
μ
(
t
)
+
∫
S
f
(
σ
(
y
)
x
t
)
d
μ
(
t
)
=
2
f
(
x
)
g
(
y
)
,
x
,
y
∈
S
,
and the Van Vleck-Wilson functional equation
∫
S
f
(
x
y
t
)
d
μ
(
t
)
-
∫
S
f
(
σ
(
y
)
x
t
)
d
μ
(
t
)
=
2
f
(
x
)
g
(
y
)
,
x
,
y
∈
S
,
where
μ
is a measure that is a linear combination of Dirac measures
(
δ
z
i
)
i
∈
I
, such that
z
i
∈
Z
(
S
)
for all
i
∈
I
. Interesting consequences of these results are presented. |
---|---|
ISSN: | 0236-5294 1588-2632 |
DOI: | 10.1007/s10474-024-01433-y |