Well-Posedness for the Extended Schrödinger–Benjamin–Ono System

In this work we prove that the initial value problem associated to the Schrödinger–Benjamin–Ono type system i ∂ t u + ∂ x 2 u = u v + β u | u | 2 , ∂ t v - H x ∂ x 2 v + ρ v ∂ x v = ∂ x ( | u | 2 ) u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , with β , ρ ∈ R is locally well-posed for initial d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics 2024-10, Vol.52 (4), p.1043-1066
Hauptverfasser: Linares, Felipe, Mendez, Argenis J., Pilod, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1066
container_issue 4
container_start_page 1043
container_title Vietnam journal of mathematics
container_volume 52
creator Linares, Felipe
Mendez, Argenis J.
Pilod, Didier
description In this work we prove that the initial value problem associated to the Schrödinger–Benjamin–Ono type system i ∂ t u + ∂ x 2 u = u v + β u | u | 2 , ∂ t v - H x ∂ x 2 v + ρ v ∂ x v = ∂ x ( | u | 2 ) u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , with β , ρ ∈ R is locally well-posed for initial data ( u 0 , v 0 ) ∈ H s + 1 2 ( R ) × H s ( R ) for s > 5 4 . Our method of proof relies on energy methods and compactness arguments. However, due to the lack of symmetry of the nonlinearity, the usual energy has to be modified to cancel out some bad terms appearing in the estimates. Finally, in order to lower the regularity below the Sobolev threshold s = 3 2 , we employ a refined Strichartz estimate introduced in the Benjamin–Ono setting by Koch and Tzvetkov, and further developed by Kenig and Koenig.
doi_str_mv 10.1007/s10013-023-00664-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3079869797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079869797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-ea0a92ace0fea3f75031007fc264d89ca30dcc3562ec0d27aafe16f1739694083</originalsourceid><addsrcrecordid>eNp9UDtOAzEQtRBIhMAFqFaiXhjbG3tdQvhKkYIUEHSWZY9JomQ32BuFdNyBu3ABbsJJcFgEHcXMvOK9eTOPkEMKxxRAnsTUKc-BpQIhiny1RTqMQy9njJXbv5g-7pK9GKeQWKWQHXL-gLNZfltHdBXGmPk6ZM0Ys4uXBiuHLhvZcfh4d5PqCcPn69sZVlMzn1QJDqs6G61jg_N9suPNLOLBz-yS-8uLu_51Phhe3fRPB7nltGhyNGAUMxbBo-Fe9oBvjveWicKVyhoOzlreEwwtOCaN8UiFp5IroQooeZcctXsXoX5eYmz0tF6GKllqDlKVQkklE4u1LBvqGAN6vQiTuQlrTUFvDHWblk5p6e-09CqJeCuKibz59W_1P6ovL6FwAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079869797</pqid></control><display><type>article</type><title>Well-Posedness for the Extended Schrödinger–Benjamin–Ono System</title><source>SpringerLink Journals - AutoHoldings</source><creator>Linares, Felipe ; Mendez, Argenis J. ; Pilod, Didier</creator><creatorcontrib>Linares, Felipe ; Mendez, Argenis J. ; Pilod, Didier</creatorcontrib><description>In this work we prove that the initial value problem associated to the Schrödinger–Benjamin–Ono type system i ∂ t u + ∂ x 2 u = u v + β u | u | 2 , ∂ t v - H x ∂ x 2 v + ρ v ∂ x v = ∂ x ( | u | 2 ) u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , with β , ρ ∈ R is locally well-posed for initial data ( u 0 , v 0 ) ∈ H s + 1 2 ( R ) × H s ( R ) for s &gt; 5 4 . Our method of proof relies on energy methods and compactness arguments. However, due to the lack of symmetry of the nonlinearity, the usual energy has to be modified to cancel out some bad terms appearing in the estimates. Finally, in order to lower the regularity below the Sobolev threshold s = 3 2 , we employ a refined Strichartz estimate introduced in the Benjamin–Ono setting by Koch and Tzvetkov, and further developed by Kenig and Koenig.</description><identifier>ISSN: 2305-221X</identifier><identifier>EISSN: 2305-2228</identifier><identifier>DOI: 10.1007/s10013-023-00664-w</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Boundary value problems ; Energy methods ; Mathematics ; Mathematics and Statistics ; Original Article ; Well posed problems</subject><ispartof>Vietnam journal of mathematics, 2024-10, Vol.52 (4), p.1043-1066</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-ea0a92ace0fea3f75031007fc264d89ca30dcc3562ec0d27aafe16f1739694083</cites><orcidid>0000-0002-2391-381X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10013-023-00664-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10013-023-00664-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Linares, Felipe</creatorcontrib><creatorcontrib>Mendez, Argenis J.</creatorcontrib><creatorcontrib>Pilod, Didier</creatorcontrib><title>Well-Posedness for the Extended Schrödinger–Benjamin–Ono System</title><title>Vietnam journal of mathematics</title><addtitle>Vietnam J. Math</addtitle><description>In this work we prove that the initial value problem associated to the Schrödinger–Benjamin–Ono type system i ∂ t u + ∂ x 2 u = u v + β u | u | 2 , ∂ t v - H x ∂ x 2 v + ρ v ∂ x v = ∂ x ( | u | 2 ) u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , with β , ρ ∈ R is locally well-posed for initial data ( u 0 , v 0 ) ∈ H s + 1 2 ( R ) × H s ( R ) for s &gt; 5 4 . Our method of proof relies on energy methods and compactness arguments. However, due to the lack of symmetry of the nonlinearity, the usual energy has to be modified to cancel out some bad terms appearing in the estimates. Finally, in order to lower the regularity below the Sobolev threshold s = 3 2 , we employ a refined Strichartz estimate introduced in the Benjamin–Ono setting by Koch and Tzvetkov, and further developed by Kenig and Koenig.</description><subject>Boundary value problems</subject><subject>Energy methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><subject>Well posed problems</subject><issn>2305-221X</issn><issn>2305-2228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UDtOAzEQtRBIhMAFqFaiXhjbG3tdQvhKkYIUEHSWZY9JomQ32BuFdNyBu3ABbsJJcFgEHcXMvOK9eTOPkEMKxxRAnsTUKc-BpQIhiny1RTqMQy9njJXbv5g-7pK9GKeQWKWQHXL-gLNZfltHdBXGmPk6ZM0Ys4uXBiuHLhvZcfh4d5PqCcPn69sZVlMzn1QJDqs6G61jg_N9suPNLOLBz-yS-8uLu_51Phhe3fRPB7nltGhyNGAUMxbBo-Fe9oBvjveWicKVyhoOzlreEwwtOCaN8UiFp5IroQooeZcctXsXoX5eYmz0tF6GKllqDlKVQkklE4u1LBvqGAN6vQiTuQlrTUFvDHWblk5p6e-09CqJeCuKibz59W_1P6ovL6FwAw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Linares, Felipe</creator><creator>Mendez, Argenis J.</creator><creator>Pilod, Didier</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2391-381X</orcidid></search><sort><creationdate>20241001</creationdate><title>Well-Posedness for the Extended Schrödinger–Benjamin–Ono System</title><author>Linares, Felipe ; Mendez, Argenis J. ; Pilod, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-ea0a92ace0fea3f75031007fc264d89ca30dcc3562ec0d27aafe16f1739694083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Energy methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linares, Felipe</creatorcontrib><creatorcontrib>Mendez, Argenis J.</creatorcontrib><creatorcontrib>Pilod, Didier</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Vietnam journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linares, Felipe</au><au>Mendez, Argenis J.</au><au>Pilod, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-Posedness for the Extended Schrödinger–Benjamin–Ono System</atitle><jtitle>Vietnam journal of mathematics</jtitle><stitle>Vietnam J. Math</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>52</volume><issue>4</issue><spage>1043</spage><epage>1066</epage><pages>1043-1066</pages><issn>2305-221X</issn><eissn>2305-2228</eissn><abstract>In this work we prove that the initial value problem associated to the Schrödinger–Benjamin–Ono type system i ∂ t u + ∂ x 2 u = u v + β u | u | 2 , ∂ t v - H x ∂ x 2 v + ρ v ∂ x v = ∂ x ( | u | 2 ) u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , with β , ρ ∈ R is locally well-posed for initial data ( u 0 , v 0 ) ∈ H s + 1 2 ( R ) × H s ( R ) for s &gt; 5 4 . Our method of proof relies on energy methods and compactness arguments. However, due to the lack of symmetry of the nonlinearity, the usual energy has to be modified to cancel out some bad terms appearing in the estimates. Finally, in order to lower the regularity below the Sobolev threshold s = 3 2 , we employ a refined Strichartz estimate introduced in the Benjamin–Ono setting by Koch and Tzvetkov, and further developed by Kenig and Koenig.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s10013-023-00664-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2391-381X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2305-221X
ispartof Vietnam journal of mathematics, 2024-10, Vol.52 (4), p.1043-1066
issn 2305-221X
2305-2228
language eng
recordid cdi_proquest_journals_3079869797
source SpringerLink Journals - AutoHoldings
subjects Boundary value problems
Energy methods
Mathematics
Mathematics and Statistics
Original Article
Well posed problems
title Well-Posedness for the Extended Schrödinger–Benjamin–Ono System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-Posedness%20for%20the%20Extended%20Schr%C3%B6dinger%E2%80%93Benjamin%E2%80%93Ono%20System&rft.jtitle=Vietnam%20journal%20of%20mathematics&rft.au=Linares,%20Felipe&rft.date=2024-10-01&rft.volume=52&rft.issue=4&rft.spage=1043&rft.epage=1066&rft.pages=1043-1066&rft.issn=2305-221X&rft.eissn=2305-2228&rft_id=info:doi/10.1007/s10013-023-00664-w&rft_dat=%3Cproquest_cross%3E3079869797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079869797&rft_id=info:pmid/&rfr_iscdi=true