Well-Posedness for the Extended Schrödinger–Benjamin–Ono System
In this work we prove that the initial value problem associated to the Schrödinger–Benjamin–Ono type system i ∂ t u + ∂ x 2 u = u v + β u | u | 2 , ∂ t v - H x ∂ x 2 v + ρ v ∂ x v = ∂ x ( | u | 2 ) u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , with β , ρ ∈ R is locally well-posed for initial d...
Gespeichert in:
Veröffentlicht in: | Vietnam journal of mathematics 2024-10, Vol.52 (4), p.1043-1066 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we prove that the initial value problem associated to the Schrödinger–Benjamin–Ono type system
i
∂
t
u
+
∂
x
2
u
=
u
v
+
β
u
|
u
|
2
,
∂
t
v
-
H
x
∂
x
2
v
+
ρ
v
∂
x
v
=
∂
x
(
|
u
|
2
)
u
(
x
,
0
)
=
u
0
(
x
)
,
v
(
x
,
0
)
=
v
0
(
x
)
,
with
β
,
ρ
∈
R
is locally well-posed for initial data
(
u
0
,
v
0
)
∈
H
s
+
1
2
(
R
)
×
H
s
(
R
)
for
s
>
5
4
. Our method of proof relies on energy methods and compactness arguments. However, due to the lack of symmetry of the nonlinearity, the usual energy has to be modified to cancel out some bad terms appearing in the estimates. Finally, in order to lower the regularity below the Sobolev threshold
s
=
3
2
, we employ a refined Strichartz estimate introduced in the Benjamin–Ono setting by Koch and Tzvetkov, and further developed by Kenig and Koenig. |
---|---|
ISSN: | 2305-221X 2305-2228 |
DOI: | 10.1007/s10013-023-00664-w |