A note on the 2-colored rectilinear crossing number of random point sets in the unit square

Let S be a set of four points chosen independently, uniformly at random from a square. Join every pair of points of S with a straight line segment. Color these edges red if they have positive slope and blue, otherwise. We show that the probability that S defines a pair of crossing edges of the same...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2024-06, Vol.173 (1), p.214-226
Hauptverfasser: Cabello, S., Czabarka, É, Fabila-Monroy, R., Higashikawa, Y., Seidel, R., Székely, L., Tkadlec, J., Wesolek, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S be a set of four points chosen independently, uniformly at random from a square. Join every pair of points of S with a straight line segment. Color these edges red if they have positive slope and blue, otherwise. We show that the probability that S defines a pair of crossing edges of the same color is equal to 1 / 4 . This is connected to a recent result of Aichholzer et al. [1] who showed that by 2-colouring the edges of a geometric graph and counting monochromatic crossings instead of crossings, the number of crossings can be more than halved. Our result shows that for the described random drawings, there is a coloring of the edges such that the number of monochromatic crossings is in expectation 1 2 - 7 50 of the total number of crossings.
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-024-01436-9