Synergistic injection of the thermosensitive hydrogel and Bi-based alloy bone cement for orthopaedic repair

Low-melting-point alloys have the advantages of good biocompatibility, plasticity, and near-bone mechanical strength, making them suitable as bone defect-filling materials for direct injection into defective bone sites. However, using low-melting-point alloys for orthopedic implants poses the challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2024-07, Vol.67 (7), p.2153-2163
Hauptverfasser: Liu, SiCong, Li, Lei, Jiang, ChanYuan, Wang, QianYu, Deng, ZhongShan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-melting-point alloys have the advantages of good biocompatibility, plasticity, and near-bone mechanical strength, making them suitable as bone defect-filling materials for direct injection into defective bone sites. However, using low-melting-point alloys for orthopedic implants poses the challenge of causing thermal damage to the surrounding bone tissue during injection. In this study, a thermosensitive hydrogel is prepared and synergistically injected into the bone defect site with BiInSn. BiInSn solidifies and releases heat during injection, while the thermosensitive hydrogel absorbs heat and transforms into a gel state, encapsulating BiInSn. Therefore, the surrounding bone tissue is effectively protected from thermal damage. When BiInSn and the thermosensitive hydrogel were injected synergistically, in vitro thermal experiments revealed that the maximum temperature of the surrounding bone tissue reached 42°C. This temperature is below the 47°C threshold, which causes permanent damage to bone tissues. In vivo experiments demonstrated that rats in the BiInSn-thermosensitive hydrogel group exhibited better recovery at the bone defect sites. These results suggest that the synergistic injection of Bi-based alloy and thermosensitive hydrogel is beneficial in reducing thermal damage to bone tissue, guiding bone tissue growth, and effectively facilitating the repair of bone defects.
ISSN:1674-7321
1869-1900
DOI:10.1007/s11431-023-2609-6