On Localization and the Spectrum of Multi-frequency Quasi-periodic Operators
We study multi-frequency quasi-periodic Schrödinger operators on Z in the regime of positive Lyapunov exponent and for general analytic potentials. Combining Bourgain’s semi-algebraic elimination of multiple resonances (Bourgain: Geom. Funct. Anal. 17 , 682–706, 2007) with the method of elimination...
Gespeichert in:
Veröffentlicht in: | Vietnam journal of mathematics 2024-10, Vol.52 (4), p.915-966 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study multi-frequency quasi-periodic Schrödinger operators on
Z
in the regime of positive Lyapunov exponent and for general analytic potentials. Combining Bourgain’s semi-algebraic elimination of multiple resonances (Bourgain: Geom. Funct. Anal.
17
, 682–706, 2007) with the method of elimination of double resonances from Avila and Jitomirskaya (Ann. Math. (2)
173
, 337–475, 2011), we establish exponential finite-volume localization as well as the separation between the eigenvalues. In a follow-up paper (Goldstein et al.: Invent. Math.
217
, 603–701, 2019) we develop the method further to show that for potentials given by large generic trigonometric polynomials the spectrum consists of a single interval, as conjectured by Chulaevski and Sinai (Commun. Math. Phys.
125
, 91–112, 1989). |
---|---|
ISSN: | 2305-221X 2305-2228 |
DOI: | 10.1007/s10013-023-00659-7 |