On Localization and the Spectrum of Multi-frequency Quasi-periodic Operators

We study multi-frequency quasi-periodic Schrödinger operators on Z in the regime of positive Lyapunov exponent and for general analytic potentials. Combining Bourgain’s semi-algebraic elimination of multiple resonances (Bourgain: Geom. Funct. Anal. 17 , 682–706, 2007) with the method of elimination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics 2024-10, Vol.52 (4), p.915-966
Hauptverfasser: Goldstein, Michael, Schlag, Wilhelm, Voda, Mircea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study multi-frequency quasi-periodic Schrödinger operators on Z in the regime of positive Lyapunov exponent and for general analytic potentials. Combining Bourgain’s semi-algebraic elimination of multiple resonances (Bourgain: Geom. Funct. Anal. 17 , 682–706, 2007) with the method of elimination of double resonances from Avila and Jitomirskaya (Ann. Math. (2) 173 , 337–475, 2011), we establish exponential finite-volume localization as well as the separation between the eigenvalues. In a follow-up paper (Goldstein et al.: Invent. Math. 217 , 603–701, 2019) we develop the method further to show that for potentials given by large generic trigonometric polynomials the spectrum consists of a single interval, as conjectured by Chulaevski and Sinai (Commun. Math. Phys. 125 , 91–112, 1989).
ISSN:2305-221X
2305-2228
DOI:10.1007/s10013-023-00659-7