On generalized Stirling numbers and zeta values

The generalized Stirling numbers of the second kind together with the Stirling numbers of the first kind are used to present a novel method to approximate the Riemann zeta function at integer values by rationals. We show that the error committed in such approximation decay exponentially to zero

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Kamel Mezlini, Moumni, Tahar, Najib Ouled Azaiez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generalized Stirling numbers of the second kind together with the Stirling numbers of the first kind are used to present a novel method to approximate the Riemann zeta function at integer values by rationals. We show that the error committed in such approximation decay exponentially to zero
ISSN:2331-8422