On generalized Stirling numbers and zeta values
The generalized Stirling numbers of the second kind together with the Stirling numbers of the first kind are used to present a novel method to approximate the Riemann zeta function at integer values by rationals. We show that the error committed in such approximation decay exponentially to zero
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The generalized Stirling numbers of the second kind together with the Stirling numbers of the first kind are used to present a novel method to approximate the Riemann zeta function at integer values by rationals. We show that the error committed in such approximation decay exponentially to zero |
---|---|
ISSN: | 2331-8422 |