Spectrum of random-to-random shuffling in the Hecke algebra
We generalize random-to-random shuffling from a Markov chain on the symmetric group to one on the Type A Iwahori Hecke algebra, and show that its eigenvalues are polynomials in q with non-negative integer coefficients. Setting q=1 recovers results of Dieker and Saliola, whose computation of the spec...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize random-to-random shuffling from a Markov chain on the symmetric group to one on the Type A Iwahori Hecke algebra, and show that its eigenvalues are polynomials in q with non-negative integer coefficients. Setting q=1 recovers results of Dieker and Saliola, whose computation of the spectrum of random-to-random in the symmetric group resolved a nearly 20 year old conjecture by Uyemura-Reyes. Our methods simplify their proofs by drawing novel connections to the Jucys-Murphy elements of the Hecke algebra, Young seminormal forms, and the Okounkov-Vershik approach to representation theory. |
---|---|
ISSN: | 2331-8422 |