Spectrum of random-to-random shuffling in the Hecke algebra

We generalize random-to-random shuffling from a Markov chain on the symmetric group to one on the Type A Iwahori Hecke algebra, and show that its eigenvalues are polynomials in q with non-negative integer coefficients. Setting q=1 recovers results of Dieker and Saliola, whose computation of the spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Axelrod-Freed, Ilani, Brauner, Sarah, Judy Hsin-Hui Chiang, Commins, Patricia, Lang, Veronica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize random-to-random shuffling from a Markov chain on the symmetric group to one on the Type A Iwahori Hecke algebra, and show that its eigenvalues are polynomials in q with non-negative integer coefficients. Setting q=1 recovers results of Dieker and Saliola, whose computation of the spectrum of random-to-random in the symmetric group resolved a nearly 20 year old conjecture by Uyemura-Reyes. Our methods simplify their proofs by drawing novel connections to the Jucys-Murphy elements of the Hecke algebra, Young seminormal forms, and the Okounkov-Vershik approach to representation theory.
ISSN:2331-8422