Application of the Heat Flow Meter Method and Extended Average Method to Improve the Accuracy of In Situ U-Value Estimations of Highly Insulated Building Walls

In the context of remodeling old buildings, enhancing insulation performance in the exterior skin necessitates an accurate assessment of a wall’s thermal performance. The conventional method for determining the thermal transmittance (U-value) of a wall is the heat flow meter (HFM) as outlined in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-07, Vol.16 (13), p.5687
Hauptverfasser: Lee, Ye-Ji, Moon, Ji-Hoon, Choi, Doo-Sung, Ko, Myeong-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the context of remodeling old buildings, enhancing insulation performance in the exterior skin necessitates an accurate assessment of a wall’s thermal performance. The conventional method for determining the thermal transmittance (U-value) of a wall is the heat flow meter (HFM) as outlined in the ISO 9869-1. However, this measurement is susceptible to errors influenced by indoor and outdoor environmental conditions and the wall’s material composition. This study evaluates the U-value of an internally insulated wall, specifically constructed for this purpose, utilizing both the average and dynamic methodologies of an HFM. Furthermore, it introduces a novel estimation method: the extended average method (EXAM). The effectiveness of this proposed method is ascertained by comparing the accuracy and convergence of the U-value estimations with those derived from existing methodologies. Additionally, the study explores the limitations of the HFM by analyzing the heat flow traversing the interior of a wall. The findings revealed that the EXAM method enhanced the precision of U-value estimation in all scenarios. Particularly, in walls with superior insulation, the HFM tended to underestimate the heat flow observed indoors, leading to negative errors. The EXAM method, incorporating considerations of both insulation and structural materials, offers an accurate in situ measurement of the U-value relative to the HFM.
ISSN:2071-1050
2071-1050
DOI:10.3390/su16135687