Performance Analysis of Internet of Vehicles Mesh Networks Based on Actual Switch Models

The rapid growth of the automotive industry has exacerbated the conflict between the complex traffic environment, increasing communication demands, and limited resources. Given the imperative to mitigate traffic and network congestion, analyzing the performance of Internet of Vehicles (IoV) mesh net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-07, Vol.13 (13), p.2605
Hauptverfasser: Hu, Jialin, Ren, Zhiyuan, Cheng, Wenchi, Shuai, Zhiliang, Li, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid growth of the automotive industry has exacerbated the conflict between the complex traffic environment, increasing communication demands, and limited resources. Given the imperative to mitigate traffic and network congestion, analyzing the performance of Internet of Vehicles (IoV) mesh networks is of great practical significance. Most studies focus solely on individual performance metrics and influencing factors, and the adopted simulation tools, such as OPNET, cannot achieve the dynamic link generation of IoV mesh networks. To address these problems, a network performance analysis model based on actual switches is proposed. First, a typical IoV mesh network architecture is constructed and abstracted into a mathematical model that describes how the link and topology changes over time. Then, the task generation model and the task forwarding model based on actual switches are proposed to obtain the real traffic distribution of the network. Finally, a scientific network performance indicator system is constructed. Simulation results demonstrate that, with rising task traffic and decreasing node caching capacity, the packet loss rate increases, and the task arrival rate decreases in the network. The proposed model can effectively evaluate the network performance across various traffic states and provide valuable insights for network construction and enhancement.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13132605