NLOCL: Noise-Labeled Online Continual Learning

Continual learning (CL) from infinite data streams has become a challenge for neural network models in real-world scenarios. Catastrophic forgetting of previous knowledge occurs in this learning setting, and existing supervised CL methods rely excessively on accurately labeled samples. However, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-07, Vol.13 (13), p.2560
Hauptverfasser: Cheng, Kan, Ma, Yongxin, Wang, Guanglu, Zong, Linlin, Liu, Xinyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Continual learning (CL) from infinite data streams has become a challenge for neural network models in real-world scenarios. Catastrophic forgetting of previous knowledge occurs in this learning setting, and existing supervised CL methods rely excessively on accurately labeled samples. However, the real-world data labels are usually misled by noise, which influences the CL agents and aggravates forgetting. To address this problem, we propose a method named noise-labeled online continual learning (NLOCL), which implements the online CL model with noise-labeled data streams. NLOCL uses an empirical replay strategy to retain crucial examples, separates data streams by small-loss criteria, and includes semi-supervised fine-tuning for labeled and unlabeled samples. Besides, NLOCL combines small loss with class diversity measures and eliminates online memory partitioning. Furthermore, we optimized the experience replay stage to enhance the model performance by retaining significant clean-labeled examples and carefully selecting suitable samples. In the experiment, we designed noise-labeled data streams by injecting noisy labels into multiple datasets and partitioning tasks to simulate infinite data streams realistically. The experimental results demonstrate the superior performance and robust learning capabilities of our proposed method.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13132560