Interpretability of rectangle packing solutions with Monte Carlo tree search

Packing problems have been studied for a long time and have great applications in real-world scenarios. In recent times, with problems in the industrial world increasing in size, exact algorithms are often not a viable option and faster approaches are needed. We study Monte Carlo tree search, a rand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heuristics 2024-08, Vol.30 (3-4), p.173-198
Hauptverfasser: Galán López, Yeray, González García, Cristian, García Díaz, Vicente, Núñez Valdez, Edward Rolando, Gómez Gómez, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Packing problems have been studied for a long time and have great applications in real-world scenarios. In recent times, with problems in the industrial world increasing in size, exact algorithms are often not a viable option and faster approaches are needed. We study Monte Carlo tree search, a random sampling algorithm that has gained great importance in literature in the last few years. We propose three approaches based on MCTS and its integration with metaheuristic algorithms or deep learning models to obtain approximated solutions to packing problems that are also interpretable by means of MCTS exploration and from which knowledge can be extracted. We focus on two-dimensional rectangle packing problems in our experimentation and use several well known benchmarks from literature to compare our solutions with existing approaches and offer a view on the potential uses for knowledge extraction from our method. We manage to match the quality of state-of-the-art methods, with improvements in time with respect to some of them and greater interpretability.
ISSN:1381-1231
1572-9397
DOI:10.1007/s10732-024-09525-2