Nanomaterials derived from metal–organic frameworks

The thermal transformation of metal–organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Materials 2017-12, Vol.3 (1), p.17075, Article 17075
Hauptverfasser: Dang, Song, Zhu, Qi-Long, Xu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermal transformation of metal–organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion. Nanomaterials derived from metal–organic frameworks (MOFs) show good performance in sensing, gas storage, catalysis and energy-related applications. In this Review, the influence of the morphology of MOF-derived nanostructures on their performance is elucidated, and the opportunities in this field are discussed.
ISSN:2058-8437
2058-8437
DOI:10.1038/natrevmats.2017.75