Chemically diverse and multifunctional hybrid organic–inorganic perovskites
Hybrid organic–inorganic perovskites (HOIPs) can have a diverse range of compositions including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. These materials have several common features, including their classical ABX 3 perovskite architecture and the presence of organic a...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Materials 2017-02, Vol.2 (3), p.16099, Article 16099 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hybrid organic–inorganic perovskites (HOIPs) can have a diverse range of compositions including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. These materials have several common features, including their classical ABX
3
perovskite architecture and the presence of organic amine cations that occupy the A-sites. Current research in HOIPs tends to focus on metal halide HOIPs, which show promise for use in solar cells and optoelectronic devices; however, the other subclasses also exhibit a diverse range of physical properties. In this Review, we summarize the chemical variability and structural diversity of all known HOIP subclasses. We also present a comprehensive account of their intriguing physical properties, including photovoltaic and optoelectronic properties, dielectricity, magnetism, ferroelectricity, ferroelasticity and multiferroicity. Moreover, we discuss the current challenges and future opportunities in this exciting field.
Hybrid organic–inorganic perovskites (HOIPs) comprise a diverse range of chemical compositions from halides and azides to formates, dicyanamides, cyanides and dicyanometallates. In this Review, advances in the synthesis, structures and properties of all HOIP subclasses are summarized and their future opportunities are discussed. |
---|---|
ISSN: | 2058-8437 2058-8437 |
DOI: | 10.1038/natrevmats.2016.99 |