Morphology, Crystal Structure and Thermal Properties of Nano-Sized Amorphous Colemanite Synthesis

It is important to utilize the raw colemanite (RC) mineral, which has abundant reserves in the world, and to reduce its particles to smaller sizes for nanotechnology. However, not only the particle size of the produced colemanite powder but also its other properties need to be elucidated. By using t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2024, Vol.49 (8), p.11699-11716
1. Verfasser: Kutuk, Sezai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is important to utilize the raw colemanite (RC) mineral, which has abundant reserves in the world, and to reduce its particles to smaller sizes for nanotechnology. However, not only the particle size of the produced colemanite powder but also its other properties need to be elucidated. By using the Taguchi design, the RC mineral was ground in a high-energy ball mill. From signal-to-noise ( S/N ) ratio, the smallest average particle size was found to be 3.10 µm for the experiment E04/nano-sized amorphous colemanite (NAC) powder. The characteristics of as-received RC mineral and synthesized NAC material were investigated using laser particle size analyzer, optical microscopes, SEM–EDS, XRD, TEM, HRTEM, and TGA–DTA devices. It was found that the NAC powder was not homogeneous, a small peak within the 300–20 nm range appeared, and d 90 , d 50 , d 10 , and d min values were, respectively, 14.6 µm, 3.08 µm, 232 nm, and 26 nm. In the XRD analysis, the pure colemanite, calcite, and silica minerals were determined. The crystal structure of the NAC powder almost turned amorphous, and the crystallite size of (031) peak was reduced to 7.3 nm. It was deduced that the average particle size was 8.29 nm ( R 2  = 0.86), and the d -spacing value was 0.307 nm. This significant finding was attributed to the mobility of balls and moreover it was interpreted with an equation. An unknown transition in TGA–DTA was referred to the calcite mineral. Finally, it is believed that the synthesized NAC material will be beneficial to engineering studies as a natural/mineral additive.
ISSN:2193-567X
1319-8025
2191-4281
DOI:10.1007/s13369-024-08801-4