Sharp threshold for embedding balanced spanning trees in random geometric graphs

A rooted tree is balanced if the degree of a vertex depends only on its distance to the root. In this paper we determine the sharp threshold for the appearance of a large family of balanced spanning trees in the random geometric graph G(n,r,d) ${\mathscr{G}}(n,r,d)$. In particular, we find the sharp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2024-09, Vol.107 (1), p.107-125
Hauptverfasser: Espuny Díaz, Alberto, Lichev, Lyuben, Mitsche, Dieter, Wesolek, Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A rooted tree is balanced if the degree of a vertex depends only on its distance to the root. In this paper we determine the sharp threshold for the appearance of a large family of balanced spanning trees in the random geometric graph G(n,r,d) ${\mathscr{G}}(n,r,d)$. In particular, we find the sharp threshold for balanced binary trees. More generally, we show that all sequences of balanced trees with uniformly bounded degrees and height tending to infinity appear above a sharp threshold, and none of these appears below the same value. Our results hold more generally for geometric graphs satisfying a mild condition on the distribution of their vertex set, and we provide a polynomial time algorithm to find such trees.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.23106