Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering
Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fai...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-07, Vol.35 (7), p.10121-10133 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10133 |
---|---|
container_issue | 7 |
container_start_page | 10121 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 35 |
creator | Wang, Huibing Yao, Mingze Jiang, Guangqi Mi, Zetian Fu, Xianping |
description | Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fails to take the local geometric structure of unlabeled samples into consideration. Moreover, hashing based on auto-encoders aims to minimize the reconstruction loss between the input data and binary codes, which ignores the potential consistency and complementarity of multiple sources data. To address the above issues, we propose a hashing algorithm based on auto-encoders for multiview binary clustering, which dynamically learns affinity graphs with low-rank constraints and adopts collaboratively learning between auto-encoders and affinity graphs to learn a unified binary code, called graph-collaborated auto-encoder (GCAE) hashing for multiview binary clustering. Specifically, we propose a multiview affinity graphs' learning model with low-rank constraint, which can mine the underlying geometric information from multiview data. Then, we design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively. Notably, we impose the decorrelation and code balance constraints on binary codes to reduce the quantization errors. Finally, we use an alternating iterative optimization scheme to obtain the multiview clustering results. Extensive experimental results on five public datasets are provided to reveal the effectiveness of the algorithm and its superior performance over other state-of-the-art alternatives. |
doi_str_mv | 10.1109/TNNLS.2023.3239033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3078095657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032273</ieee_id><sourcerecordid>3078095657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-8e8dfefd8cd4ad1a43b0ac2a9016a3964dc1712ee391be92379c80aa02d9f3513</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMoKuofEJGCFy9dk5l-JEdddBVWPajgLWSbqVa6zZq0iv_e6K4i5pJAnnl552FsX_CREFyd3N_cTO9GwAFHCKg44hrbBlFACijl-u-7fNxieyG88HgKnheZ2mRbWHIAyPNtNpl4s3hOx65tzcx505NNTofepedd5Sz55NKE56Z7Smrnk-uh7Zu3ht6Ts6Yz_iMZt0Poycf_XbZRmzbQ3ureYQ8X5_fjy3R6O7kan07TCnPoU0nS1lRbWdnMWGEynHFTgVFcFAZVkdlKlAKIUIkZqVhfVZIbw8GqGnOBO-x4mbvw7nWg0Ot5EyqK7TtyQ9BQqlJkUsksokf_0Bc3-C6208hLyVVe5GWkYElV3oXgqdYL38zjclpw_WVaf5vWX6b1ynQcOlxFD7M52d-RH68ROFgCDRH9SeQIUCJ-AozTgWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078095657</pqid></control><display><type>article</type><title>Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Huibing ; Yao, Mingze ; Jiang, Guangqi ; Mi, Zetian ; Fu, Xianping</creator><creatorcontrib>Wang, Huibing ; Yao, Mingze ; Jiang, Guangqi ; Mi, Zetian ; Fu, Xianping</creatorcontrib><description>Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fails to take the local geometric structure of unlabeled samples into consideration. Moreover, hashing based on auto-encoders aims to minimize the reconstruction loss between the input data and binary codes, which ignores the potential consistency and complementarity of multiple sources data. To address the above issues, we propose a hashing algorithm based on auto-encoders for multiview binary clustering, which dynamically learns affinity graphs with low-rank constraints and adopts collaboratively learning between auto-encoders and affinity graphs to learn a unified binary code, called graph-collaborated auto-encoder (GCAE) hashing for multiview binary clustering. Specifically, we propose a multiview affinity graphs' learning model with low-rank constraint, which can mine the underlying geometric information from multiview data. Then, we design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively. Notably, we impose the decorrelation and code balance constraints on binary codes to reduce the quantization errors. Finally, we use an alternating iterative optimization scheme to obtain the multiview clustering results. Extensive experimental results on five public datasets are provided to reveal the effectiveness of the algorithm and its superior performance over other state-of-the-art alternatives.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3239033</identifier><identifier>PMID: 37022255</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Affinity ; Algorithms ; Auto-encoder ; binary code ; Binary codes ; Clustering ; Clustering algorithms ; Coders ; Codes ; Complementarity ; Data models ; Error reduction ; Explosive compacting ; Feature extraction ; graph-collaborated ; Graphs ; Hash based algorithms ; Learning ; Machine learning ; multiview clustering ; Quantization (signal) ; Semantics ; Task analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-07, Vol.35 (7), p.10121-10133</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-8e8dfefd8cd4ad1a43b0ac2a9016a3964dc1712ee391be92379c80aa02d9f3513</citedby><cites>FETCH-LOGICAL-c352t-8e8dfefd8cd4ad1a43b0ac2a9016a3964dc1712ee391be92379c80aa02d9f3513</cites><orcidid>0000-0002-6591-9304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10032273$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37022255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Huibing</creatorcontrib><creatorcontrib>Yao, Mingze</creatorcontrib><creatorcontrib>Jiang, Guangqi</creatorcontrib><creatorcontrib>Mi, Zetian</creatorcontrib><creatorcontrib>Fu, Xianping</creatorcontrib><title>Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fails to take the local geometric structure of unlabeled samples into consideration. Moreover, hashing based on auto-encoders aims to minimize the reconstruction loss between the input data and binary codes, which ignores the potential consistency and complementarity of multiple sources data. To address the above issues, we propose a hashing algorithm based on auto-encoders for multiview binary clustering, which dynamically learns affinity graphs with low-rank constraints and adopts collaboratively learning between auto-encoders and affinity graphs to learn a unified binary code, called graph-collaborated auto-encoder (GCAE) hashing for multiview binary clustering. Specifically, we propose a multiview affinity graphs' learning model with low-rank constraint, which can mine the underlying geometric information from multiview data. Then, we design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively. Notably, we impose the decorrelation and code balance constraints on binary codes to reduce the quantization errors. Finally, we use an alternating iterative optimization scheme to obtain the multiview clustering results. Extensive experimental results on five public datasets are provided to reveal the effectiveness of the algorithm and its superior performance over other state-of-the-art alternatives.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Auto-encoder</subject><subject>binary code</subject><subject>Binary codes</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Coders</subject><subject>Codes</subject><subject>Complementarity</subject><subject>Data models</subject><subject>Error reduction</subject><subject>Explosive compacting</subject><subject>Feature extraction</subject><subject>graph-collaborated</subject><subject>Graphs</subject><subject>Hash based algorithms</subject><subject>Learning</subject><subject>Machine learning</subject><subject>multiview clustering</subject><subject>Quantization (signal)</subject><subject>Semantics</subject><subject>Task analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMoKuofEJGCFy9dk5l-JEdddBVWPajgLWSbqVa6zZq0iv_e6K4i5pJAnnl552FsX_CREFyd3N_cTO9GwAFHCKg44hrbBlFACijl-u-7fNxieyG88HgKnheZ2mRbWHIAyPNtNpl4s3hOx65tzcx505NNTofepedd5Sz55NKE56Z7Smrnk-uh7Zu3ht6Ts6Yz_iMZt0Poycf_XbZRmzbQ3ureYQ8X5_fjy3R6O7kan07TCnPoU0nS1lRbWdnMWGEynHFTgVFcFAZVkdlKlAKIUIkZqVhfVZIbw8GqGnOBO-x4mbvw7nWg0Ot5EyqK7TtyQ9BQqlJkUsksokf_0Bc3-C6208hLyVVe5GWkYElV3oXgqdYL38zjclpw_WVaf5vWX6b1ynQcOlxFD7M52d-RH68ROFgCDRH9SeQIUCJ-AozTgWQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Wang, Huibing</creator><creator>Yao, Mingze</creator><creator>Jiang, Guangqi</creator><creator>Mi, Zetian</creator><creator>Fu, Xianping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6591-9304</orcidid></search><sort><creationdate>20240701</creationdate><title>Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering</title><author>Wang, Huibing ; Yao, Mingze ; Jiang, Guangqi ; Mi, Zetian ; Fu, Xianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-8e8dfefd8cd4ad1a43b0ac2a9016a3964dc1712ee391be92379c80aa02d9f3513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Auto-encoder</topic><topic>binary code</topic><topic>Binary codes</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Coders</topic><topic>Codes</topic><topic>Complementarity</topic><topic>Data models</topic><topic>Error reduction</topic><topic>Explosive compacting</topic><topic>Feature extraction</topic><topic>graph-collaborated</topic><topic>Graphs</topic><topic>Hash based algorithms</topic><topic>Learning</topic><topic>Machine learning</topic><topic>multiview clustering</topic><topic>Quantization (signal)</topic><topic>Semantics</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huibing</creatorcontrib><creatorcontrib>Yao, Mingze</creatorcontrib><creatorcontrib>Jiang, Guangqi</creatorcontrib><creatorcontrib>Mi, Zetian</creatorcontrib><creatorcontrib>Fu, Xianping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Huibing</au><au>Yao, Mingze</au><au>Jiang, Guangqi</au><au>Mi, Zetian</au><au>Fu, Xianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>35</volume><issue>7</issue><spage>10121</spage><epage>10133</epage><pages>10121-10133</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fails to take the local geometric structure of unlabeled samples into consideration. Moreover, hashing based on auto-encoders aims to minimize the reconstruction loss between the input data and binary codes, which ignores the potential consistency and complementarity of multiple sources data. To address the above issues, we propose a hashing algorithm based on auto-encoders for multiview binary clustering, which dynamically learns affinity graphs with low-rank constraints and adopts collaboratively learning between auto-encoders and affinity graphs to learn a unified binary code, called graph-collaborated auto-encoder (GCAE) hashing for multiview binary clustering. Specifically, we propose a multiview affinity graphs' learning model with low-rank constraint, which can mine the underlying geometric information from multiview data. Then, we design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively. Notably, we impose the decorrelation and code balance constraints on binary codes to reduce the quantization errors. Finally, we use an alternating iterative optimization scheme to obtain the multiview clustering results. Extensive experimental results on five public datasets are provided to reveal the effectiveness of the algorithm and its superior performance over other state-of-the-art alternatives.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37022255</pmid><doi>10.1109/TNNLS.2023.3239033</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6591-9304</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-07, Vol.35 (7), p.10121-10133 |
issn | 2162-237X 2162-2388 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_3078095657 |
source | IEEE Electronic Library (IEL) |
subjects | Affinity Algorithms Auto-encoder binary code Binary codes Clustering Clustering algorithms Coders Codes Complementarity Data models Error reduction Explosive compacting Feature extraction graph-collaborated Graphs Hash based algorithms Learning Machine learning multiview clustering Quantization (signal) Semantics Task analysis |
title | Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph-Collaborated%20Auto-Encoder%20Hashing%20for%20Multiview%20Binary%20Clustering&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wang,%20Huibing&rft.date=2024-07-01&rft.volume=35&rft.issue=7&rft.spage=10121&rft.epage=10133&rft.pages=10121-10133&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3239033&rft_dat=%3Cproquest_RIE%3E3078095657%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078095657&rft_id=info:pmid/37022255&rft_ieee_id=10032273&rfr_iscdi=true |