Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering

Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-07, Vol.35 (7), p.10121-10133
Hauptverfasser: Wang, Huibing, Yao, Mingze, Jiang, Guangqi, Mi, Zetian, Fu, Xianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10133
container_issue 7
container_start_page 10121
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Wang, Huibing
Yao, Mingze
Jiang, Guangqi
Mi, Zetian
Fu, Xianping
description Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fails to take the local geometric structure of unlabeled samples into consideration. Moreover, hashing based on auto-encoders aims to minimize the reconstruction loss between the input data and binary codes, which ignores the potential consistency and complementarity of multiple sources data. To address the above issues, we propose a hashing algorithm based on auto-encoders for multiview binary clustering, which dynamically learns affinity graphs with low-rank constraints and adopts collaboratively learning between auto-encoders and affinity graphs to learn a unified binary code, called graph-collaborated auto-encoder (GCAE) hashing for multiview binary clustering. Specifically, we propose a multiview affinity graphs' learning model with low-rank constraint, which can mine the underlying geometric information from multiview data. Then, we design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively. Notably, we impose the decorrelation and code balance constraints on binary codes to reduce the quantization errors. Finally, we use an alternating iterative optimization scheme to obtain the multiview clustering results. Extensive experimental results on five public datasets are provided to reveal the effectiveness of the algorithm and its superior performance over other state-of-the-art alternatives.
doi_str_mv 10.1109/TNNLS.2023.3239033
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3078095657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032273</ieee_id><sourcerecordid>3078095657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-8e8dfefd8cd4ad1a43b0ac2a9016a3964dc1712ee391be92379c80aa02d9f3513</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMoKuofEJGCFy9dk5l-JEdddBVWPajgLWSbqVa6zZq0iv_e6K4i5pJAnnl552FsX_CREFyd3N_cTO9GwAFHCKg44hrbBlFACijl-u-7fNxieyG88HgKnheZ2mRbWHIAyPNtNpl4s3hOx65tzcx505NNTofepedd5Sz55NKE56Z7Smrnk-uh7Zu3ht6Ts6Yz_iMZt0Poycf_XbZRmzbQ3ureYQ8X5_fjy3R6O7kan07TCnPoU0nS1lRbWdnMWGEynHFTgVFcFAZVkdlKlAKIUIkZqVhfVZIbw8GqGnOBO-x4mbvw7nWg0Ot5EyqK7TtyQ9BQqlJkUsksokf_0Bc3-C6208hLyVVe5GWkYElV3oXgqdYL38zjclpw_WVaf5vWX6b1ynQcOlxFD7M52d-RH68ROFgCDRH9SeQIUCJ-AozTgWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078095657</pqid></control><display><type>article</type><title>Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Huibing ; Yao, Mingze ; Jiang, Guangqi ; Mi, Zetian ; Fu, Xianping</creator><creatorcontrib>Wang, Huibing ; Yao, Mingze ; Jiang, Guangqi ; Mi, Zetian ; Fu, Xianping</creatorcontrib><description>Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fails to take the local geometric structure of unlabeled samples into consideration. Moreover, hashing based on auto-encoders aims to minimize the reconstruction loss between the input data and binary codes, which ignores the potential consistency and complementarity of multiple sources data. To address the above issues, we propose a hashing algorithm based on auto-encoders for multiview binary clustering, which dynamically learns affinity graphs with low-rank constraints and adopts collaboratively learning between auto-encoders and affinity graphs to learn a unified binary code, called graph-collaborated auto-encoder (GCAE) hashing for multiview binary clustering. Specifically, we propose a multiview affinity graphs' learning model with low-rank constraint, which can mine the underlying geometric information from multiview data. Then, we design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively. Notably, we impose the decorrelation and code balance constraints on binary codes to reduce the quantization errors. Finally, we use an alternating iterative optimization scheme to obtain the multiview clustering results. Extensive experimental results on five public datasets are provided to reveal the effectiveness of the algorithm and its superior performance over other state-of-the-art alternatives.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3239033</identifier><identifier>PMID: 37022255</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Affinity ; Algorithms ; Auto-encoder ; binary code ; Binary codes ; Clustering ; Clustering algorithms ; Coders ; Codes ; Complementarity ; Data models ; Error reduction ; Explosive compacting ; Feature extraction ; graph-collaborated ; Graphs ; Hash based algorithms ; Learning ; Machine learning ; multiview clustering ; Quantization (signal) ; Semantics ; Task analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-07, Vol.35 (7), p.10121-10133</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-8e8dfefd8cd4ad1a43b0ac2a9016a3964dc1712ee391be92379c80aa02d9f3513</citedby><cites>FETCH-LOGICAL-c352t-8e8dfefd8cd4ad1a43b0ac2a9016a3964dc1712ee391be92379c80aa02d9f3513</cites><orcidid>0000-0002-6591-9304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10032273$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37022255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Huibing</creatorcontrib><creatorcontrib>Yao, Mingze</creatorcontrib><creatorcontrib>Jiang, Guangqi</creatorcontrib><creatorcontrib>Mi, Zetian</creatorcontrib><creatorcontrib>Fu, Xianping</creatorcontrib><title>Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fails to take the local geometric structure of unlabeled samples into consideration. Moreover, hashing based on auto-encoders aims to minimize the reconstruction loss between the input data and binary codes, which ignores the potential consistency and complementarity of multiple sources data. To address the above issues, we propose a hashing algorithm based on auto-encoders for multiview binary clustering, which dynamically learns affinity graphs with low-rank constraints and adopts collaboratively learning between auto-encoders and affinity graphs to learn a unified binary code, called graph-collaborated auto-encoder (GCAE) hashing for multiview binary clustering. Specifically, we propose a multiview affinity graphs' learning model with low-rank constraint, which can mine the underlying geometric information from multiview data. Then, we design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively. Notably, we impose the decorrelation and code balance constraints on binary codes to reduce the quantization errors. Finally, we use an alternating iterative optimization scheme to obtain the multiview clustering results. Extensive experimental results on five public datasets are provided to reveal the effectiveness of the algorithm and its superior performance over other state-of-the-art alternatives.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Auto-encoder</subject><subject>binary code</subject><subject>Binary codes</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Coders</subject><subject>Codes</subject><subject>Complementarity</subject><subject>Data models</subject><subject>Error reduction</subject><subject>Explosive compacting</subject><subject>Feature extraction</subject><subject>graph-collaborated</subject><subject>Graphs</subject><subject>Hash based algorithms</subject><subject>Learning</subject><subject>Machine learning</subject><subject>multiview clustering</subject><subject>Quantization (signal)</subject><subject>Semantics</subject><subject>Task analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMoKuofEJGCFy9dk5l-JEdddBVWPajgLWSbqVa6zZq0iv_e6K4i5pJAnnl552FsX_CREFyd3N_cTO9GwAFHCKg44hrbBlFACijl-u-7fNxieyG88HgKnheZ2mRbWHIAyPNtNpl4s3hOx65tzcx505NNTofepedd5Sz55NKE56Z7Smrnk-uh7Zu3ht6Ts6Yz_iMZt0Poycf_XbZRmzbQ3ureYQ8X5_fjy3R6O7kan07TCnPoU0nS1lRbWdnMWGEynHFTgVFcFAZVkdlKlAKIUIkZqVhfVZIbw8GqGnOBO-x4mbvw7nWg0Ot5EyqK7TtyQ9BQqlJkUsksokf_0Bc3-C6208hLyVVe5GWkYElV3oXgqdYL38zjclpw_WVaf5vWX6b1ynQcOlxFD7M52d-RH68ROFgCDRH9SeQIUCJ-AozTgWQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Wang, Huibing</creator><creator>Yao, Mingze</creator><creator>Jiang, Guangqi</creator><creator>Mi, Zetian</creator><creator>Fu, Xianping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6591-9304</orcidid></search><sort><creationdate>20240701</creationdate><title>Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering</title><author>Wang, Huibing ; Yao, Mingze ; Jiang, Guangqi ; Mi, Zetian ; Fu, Xianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-8e8dfefd8cd4ad1a43b0ac2a9016a3964dc1712ee391be92379c80aa02d9f3513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Auto-encoder</topic><topic>binary code</topic><topic>Binary codes</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Coders</topic><topic>Codes</topic><topic>Complementarity</topic><topic>Data models</topic><topic>Error reduction</topic><topic>Explosive compacting</topic><topic>Feature extraction</topic><topic>graph-collaborated</topic><topic>Graphs</topic><topic>Hash based algorithms</topic><topic>Learning</topic><topic>Machine learning</topic><topic>multiview clustering</topic><topic>Quantization (signal)</topic><topic>Semantics</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huibing</creatorcontrib><creatorcontrib>Yao, Mingze</creatorcontrib><creatorcontrib>Jiang, Guangqi</creatorcontrib><creatorcontrib>Mi, Zetian</creatorcontrib><creatorcontrib>Fu, Xianping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Huibing</au><au>Yao, Mingze</au><au>Jiang, Guangqi</au><au>Mi, Zetian</au><au>Fu, Xianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>35</volume><issue>7</issue><spage>10121</spage><epage>10133</epage><pages>10121-10133</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fails to take the local geometric structure of unlabeled samples into consideration. Moreover, hashing based on auto-encoders aims to minimize the reconstruction loss between the input data and binary codes, which ignores the potential consistency and complementarity of multiple sources data. To address the above issues, we propose a hashing algorithm based on auto-encoders for multiview binary clustering, which dynamically learns affinity graphs with low-rank constraints and adopts collaboratively learning between auto-encoders and affinity graphs to learn a unified binary code, called graph-collaborated auto-encoder (GCAE) hashing for multiview binary clustering. Specifically, we propose a multiview affinity graphs' learning model with low-rank constraint, which can mine the underlying geometric information from multiview data. Then, we design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively. Notably, we impose the decorrelation and code balance constraints on binary codes to reduce the quantization errors. Finally, we use an alternating iterative optimization scheme to obtain the multiview clustering results. Extensive experimental results on five public datasets are provided to reveal the effectiveness of the algorithm and its superior performance over other state-of-the-art alternatives.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37022255</pmid><doi>10.1109/TNNLS.2023.3239033</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6591-9304</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-07, Vol.35 (7), p.10121-10133
issn 2162-237X
2162-2388
2162-2388
language eng
recordid cdi_proquest_journals_3078095657
source IEEE Electronic Library (IEL)
subjects Affinity
Algorithms
Auto-encoder
binary code
Binary codes
Clustering
Clustering algorithms
Coders
Codes
Complementarity
Data models
Error reduction
Explosive compacting
Feature extraction
graph-collaborated
Graphs
Hash based algorithms
Learning
Machine learning
multiview clustering
Quantization (signal)
Semantics
Task analysis
title Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph-Collaborated%20Auto-Encoder%20Hashing%20for%20Multiview%20Binary%20Clustering&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wang,%20Huibing&rft.date=2024-07-01&rft.volume=35&rft.issue=7&rft.spage=10121&rft.epage=10133&rft.pages=10121-10133&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3239033&rft_dat=%3Cproquest_RIE%3E3078095657%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078095657&rft_id=info:pmid/37022255&rft_ieee_id=10032273&rfr_iscdi=true