Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering

Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-07, Vol.35 (7), p.10121-10133
Hauptverfasser: Wang, Huibing, Yao, Mingze, Jiang, Guangqi, Mi, Zetian, Fu, Xianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unsupervised hashing methods have attracted widespread attention with the explosive growth of large-scale data, which can greatly reduce storage and computation by learning compact binary codes. Existing unsupervised hashing methods attempt to exploit the valuable information from samples, which fails to take the local geometric structure of unlabeled samples into consideration. Moreover, hashing based on auto-encoders aims to minimize the reconstruction loss between the input data and binary codes, which ignores the potential consistency and complementarity of multiple sources data. To address the above issues, we propose a hashing algorithm based on auto-encoders for multiview binary clustering, which dynamically learns affinity graphs with low-rank constraints and adopts collaboratively learning between auto-encoders and affinity graphs to learn a unified binary code, called graph-collaborated auto-encoder (GCAE) hashing for multiview binary clustering. Specifically, we propose a multiview affinity graphs' learning model with low-rank constraint, which can mine the underlying geometric information from multiview data. Then, we design an encoder-decoder paradigm to collaborate the multiple affinity graphs, which can learn a unified binary code effectively. Notably, we impose the decorrelation and code balance constraints on binary codes to reduce the quantization errors. Finally, we use an alternating iterative optimization scheme to obtain the multiview clustering results. Extensive experimental results on five public datasets are provided to reveal the effectiveness of the algorithm and its superior performance over other state-of-the-art alternatives.
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2023.3239033