Energy-Efficient Multi-RIS-Aided Rate-Splitting Multiple Access: A Graph Neural Network Approach

This letter explores energy efficiency (EE) maximization in a downlink multiple-input single-output (MISO) reconfigurable intelligent surface (RIS)-aided multiuser system employing rate-splitting multiple access (RSMA). The optimization task entails base station (BS) and RIS beamforming and RSMA com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2024-07, Vol.13 (7), p.2003-2007
Hauptverfasser: Chen, Bing-Jia, Chang, Ronald Y., Chien, Feng-Tsun, Poor, H. Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter explores energy efficiency (EE) maximization in a downlink multiple-input single-output (MISO) reconfigurable intelligent surface (RIS)-aided multiuser system employing rate-splitting multiple access (RSMA). The optimization task entails base station (BS) and RIS beamforming and RSMA common rate allocation with constraints. We propose a graph neural network (GNN) model that learns beamforming and rate allocation directly from the channel information using a unique graph representation derived from the communication system. The GNN model outperforms existing deep neural network (DNN) and model-based methods in terms of EE, demonstrating low complexity, resilience to imperfect channel information, and effective generalization across varying user numbers.
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2024.3400927