Energy-Efficient Multi-RIS-Aided Rate-Splitting Multiple Access: A Graph Neural Network Approach
This letter explores energy efficiency (EE) maximization in a downlink multiple-input single-output (MISO) reconfigurable intelligent surface (RIS)-aided multiuser system employing rate-splitting multiple access (RSMA). The optimization task entails base station (BS) and RIS beamforming and RSMA com...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2024-07, Vol.13 (7), p.2003-2007 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This letter explores energy efficiency (EE) maximization in a downlink multiple-input single-output (MISO) reconfigurable intelligent surface (RIS)-aided multiuser system employing rate-splitting multiple access (RSMA). The optimization task entails base station (BS) and RIS beamforming and RSMA common rate allocation with constraints. We propose a graph neural network (GNN) model that learns beamforming and rate allocation directly from the channel information using a unique graph representation derived from the communication system. The GNN model outperforms existing deep neural network (DNN) and model-based methods in terms of EE, demonstrating low complexity, resilience to imperfect channel information, and effective generalization across varying user numbers. |
---|---|
ISSN: | 2162-2337 2162-2345 |
DOI: | 10.1109/LWC.2024.3400927 |