Linear Active Disturbance Rejection Control of IPMSM Based on Quasi-Proportional Resonance and Disturbance Differential Compensation Linear Extended State Observer

When the interior permanent magnet synchronous motor drive system is affected by both dc and ac disturbances, the estimation error of ac disturbance cannot be converged to the steady-state value by the traditional linear extended state observer (T-LESO). At the same time, the tracking and antidistur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2024-10, Vol.71 (10), p.11910-11924
Hauptverfasser: Cui, Yangyang, Yin, Zhonggang, Luo, Peien, Yuan, Dongsheng, Liu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When the interior permanent magnet synchronous motor drive system is affected by both dc and ac disturbances, the estimation error of ac disturbance cannot be converged to the steady-state value by the traditional linear extended state observer (T-LESO). At the same time, the tracking and antidisturbance ability of the traditional linear active disturbance rejection controller(T-LADRC) to dc disturbance is insufficient due to the influence of observer bandwidth frequency. To solve the above-mentioned problems, an improved LADRC combining a quasi-proportional resonance (QPR) controller and disturbance differential compensation LESO is proposed in this article. In this controller, the linear state error feedback in the T-LADRC is replaced by QPR, so that the ac disturbance to the system can be effectively suppressed. Based on T-LESO, the derivative of the disturbance is introduced, whose estimation range of LESO for dc disturbance is broadened without increasing the observer bandwidth, thereby avoiding system oscillation caused by excessive observer bandwidth. Finally, the validity and availability of the proposed method are proved through theoretical analysis and experiment.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2024.3352154