ESO-Based Safety-Critical Control for Robotic Systems With Unmeasured Velocity and Input Delay
For practical robots, obtaining precise dynamic models and states is a challenge, which presents difficulty in achieving safety-critical control. When faced with an uncertain dynamic model of the robotic system and the absence of measurements for joint velocity, this article proposes a method by com...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2024-10, Vol.71 (10), p.13053-13063 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For practical robots, obtaining precise dynamic models and states is a challenge, which presents difficulty in achieving safety-critical control. When faced with an uncertain dynamic model of the robotic system and the absence of measurements for joint velocity, this article proposes a method by combining extended state observer (ESO) and control barrier function (CBF) for safety-critical control. Firstly, an ESO is used to estimate the model and states in real time. Then, according to the estimation error, the ESO-based CBF (ESO-CBF) is proposed, and a quadratic programming subject to ESO-CBF is constructed to calculate the control input for robotic systems. In addition, input delay is also considered for robotic systems with uncertain models. In cases involving input delay, a predictive ESO is designed to estimate the model, and the corresponding estimation error boundary is derived. Based on the estimation error, ESO-CBF is constructed to ensure the safety constraint. Finally, the effectiveness of the proposed method is verified by the obstacle avoidance task of Franka Emika Panda manipulator. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2024.3349592 |