A subdivision-based framework for shape reconstruction
Shape reconstruction from 3D point clouds is one of the most important topic in the field of computer graphics. In this paper, we propose a subdivision-based framework for this topic. The framework includes two parts: distance field optimization and mesh generation. The first part optimizes a point...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-07, Vol.83 (25), p.65773-65788 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65788 |
---|---|
container_issue | 25 |
container_start_page | 65773 |
container_title | Multimedia tools and applications |
container_volume | 83 |
creator | Shaolong, Liu Na, Liu Chenlei, Lv Dan, Zhang |
description | Shape reconstruction from 3D point clouds is one of the most important topic in the field of computer graphics. In this paper, we propose a subdivision-based framework for this topic. The framework includes two parts: distance field optimization and mesh generation. The first part optimizes a point cloud into an approximately isotropic one based on a subdivision structure. The second part is to generate a triangular mesh from the optimized point cloud. The mesh is regarded as the result of shape reconstruction. The advantages of our method includes accurate geometric consistency, improved mesh quality, controllable point number, and fast speed. Experiments indicate that our method has good performance for shape reconstruction (compare to the state-of-the-art, our method achieves five and six times improvement in Hausdorff distance-based measurement and density estimation). The executable file is available: (
https://github.com/vvvwo/Parallel-Structure-ShapeReconstruction
) |
doi_str_mv | 10.1007/s11042-023-15398-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3077578169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077578169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c489477efff8117e7798a7106049f7d77c5595856c8f81f5b2d03e990ddd60c53</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbpOlNlsPgCwbc6Dp08tCOTjMmreK_N1pBV67uWXznXPgIOWVwzgDwIjMGNafABWVSaEVxj8yYREEROdv_kw_JUc4bANZIXs9Is6jyuHbdW5e72NN1m72rQmq3_j2m5yrEVOWnduer5G3s85BGOxTwmByE9iX7k587Jw9Xl_fLG7q6u75dLlbUcoSB2lrpGtGHEBRj6BG1apFBA7UO6BCtlFoq2VhVgCDX3IHwWoNzrgErxZycTbu7FF9HnweziWPqy0sjAFGiYo0uFJ8om2LOyQezS922TR-GgfnyYyY_pvgx334MlpKYSrnA_aNPv9P_tD4B7zNnQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077578169</pqid></control><display><type>article</type><title>A subdivision-based framework for shape reconstruction</title><source>Springer Nature - Complete Springer Journals</source><creator>Shaolong, Liu ; Na, Liu ; Chenlei, Lv ; Dan, Zhang</creator><creatorcontrib>Shaolong, Liu ; Na, Liu ; Chenlei, Lv ; Dan, Zhang</creatorcontrib><description>Shape reconstruction from 3D point clouds is one of the most important topic in the field of computer graphics. In this paper, we propose a subdivision-based framework for this topic. The framework includes two parts: distance field optimization and mesh generation. The first part optimizes a point cloud into an approximately isotropic one based on a subdivision structure. The second part is to generate a triangular mesh from the optimized point cloud. The mesh is regarded as the result of shape reconstruction. The advantages of our method includes accurate geometric consistency, improved mesh quality, controllable point number, and fast speed. Experiments indicate that our method has good performance for shape reconstruction (compare to the state-of-the-art, our method achieves five and six times improvement in Hausdorff distance-based measurement and density estimation). The executable file is available: (
https://github.com/vvvwo/Parallel-Structure-ShapeReconstruction
)</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-15398-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Approximation ; Computer Communication Networks ; Computer graphics ; Computer Science ; Controllability ; Data Structures and Information Theory ; Image reconstruction ; Mesh generation ; Methods ; Metric space ; Multimedia ; Multimedia Information Systems ; Optimization ; Shape optimization ; Special Purpose and Application-Based Systems ; Three dimensional models</subject><ispartof>Multimedia tools and applications, 2024-07, Vol.83 (25), p.65773-65788</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c489477efff8117e7798a7106049f7d77c5595856c8f81f5b2d03e990ddd60c53</cites><orcidid>0000-0002-8203-3118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-15398-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-15398-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shaolong, Liu</creatorcontrib><creatorcontrib>Na, Liu</creatorcontrib><creatorcontrib>Chenlei, Lv</creatorcontrib><creatorcontrib>Dan, Zhang</creatorcontrib><title>A subdivision-based framework for shape reconstruction</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Shape reconstruction from 3D point clouds is one of the most important topic in the field of computer graphics. In this paper, we propose a subdivision-based framework for this topic. The framework includes two parts: distance field optimization and mesh generation. The first part optimizes a point cloud into an approximately isotropic one based on a subdivision structure. The second part is to generate a triangular mesh from the optimized point cloud. The mesh is regarded as the result of shape reconstruction. The advantages of our method includes accurate geometric consistency, improved mesh quality, controllable point number, and fast speed. Experiments indicate that our method has good performance for shape reconstruction (compare to the state-of-the-art, our method achieves five and six times improvement in Hausdorff distance-based measurement and density estimation). The executable file is available: (
https://github.com/vvvwo/Parallel-Structure-ShapeReconstruction
)</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Computer Communication Networks</subject><subject>Computer graphics</subject><subject>Computer Science</subject><subject>Controllability</subject><subject>Data Structures and Information Theory</subject><subject>Image reconstruction</subject><subject>Mesh generation</subject><subject>Methods</subject><subject>Metric space</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Optimization</subject><subject>Shape optimization</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Three dimensional models</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbpOlNlsPgCwbc6Dp08tCOTjMmreK_N1pBV67uWXznXPgIOWVwzgDwIjMGNafABWVSaEVxj8yYREEROdv_kw_JUc4bANZIXs9Is6jyuHbdW5e72NN1m72rQmq3_j2m5yrEVOWnduer5G3s85BGOxTwmByE9iX7k587Jw9Xl_fLG7q6u75dLlbUcoSB2lrpGtGHEBRj6BG1apFBA7UO6BCtlFoq2VhVgCDX3IHwWoNzrgErxZycTbu7FF9HnweziWPqy0sjAFGiYo0uFJ8om2LOyQezS922TR-GgfnyYyY_pvgx334MlpKYSrnA_aNPv9P_tD4B7zNnQA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Shaolong, Liu</creator><creator>Na, Liu</creator><creator>Chenlei, Lv</creator><creator>Dan, Zhang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8203-3118</orcidid></search><sort><creationdate>20240701</creationdate><title>A subdivision-based framework for shape reconstruction</title><author>Shaolong, Liu ; Na, Liu ; Chenlei, Lv ; Dan, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c489477efff8117e7798a7106049f7d77c5595856c8f81f5b2d03e990ddd60c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Computer Communication Networks</topic><topic>Computer graphics</topic><topic>Computer Science</topic><topic>Controllability</topic><topic>Data Structures and Information Theory</topic><topic>Image reconstruction</topic><topic>Mesh generation</topic><topic>Methods</topic><topic>Metric space</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Optimization</topic><topic>Shape optimization</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaolong, Liu</creatorcontrib><creatorcontrib>Na, Liu</creatorcontrib><creatorcontrib>Chenlei, Lv</creatorcontrib><creatorcontrib>Dan, Zhang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaolong, Liu</au><au>Na, Liu</au><au>Chenlei, Lv</au><au>Dan, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A subdivision-based framework for shape reconstruction</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>83</volume><issue>25</issue><spage>65773</spage><epage>65788</epage><pages>65773-65788</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Shape reconstruction from 3D point clouds is one of the most important topic in the field of computer graphics. In this paper, we propose a subdivision-based framework for this topic. The framework includes two parts: distance field optimization and mesh generation. The first part optimizes a point cloud into an approximately isotropic one based on a subdivision structure. The second part is to generate a triangular mesh from the optimized point cloud. The mesh is regarded as the result of shape reconstruction. The advantages of our method includes accurate geometric consistency, improved mesh quality, controllable point number, and fast speed. Experiments indicate that our method has good performance for shape reconstruction (compare to the state-of-the-art, our method achieves five and six times improvement in Hausdorff distance-based measurement and density estimation). The executable file is available: (
https://github.com/vvvwo/Parallel-Structure-ShapeReconstruction
)</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-15398-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8203-3118</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7721 |
ispartof | Multimedia tools and applications, 2024-07, Vol.83 (25), p.65773-65788 |
issn | 1573-7721 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_3077578169 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Approximation Computer Communication Networks Computer graphics Computer Science Controllability Data Structures and Information Theory Image reconstruction Mesh generation Methods Metric space Multimedia Multimedia Information Systems Optimization Shape optimization Special Purpose and Application-Based Systems Three dimensional models |
title | A subdivision-based framework for shape reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20subdivision-based%20framework%20for%20shape%20reconstruction&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Shaolong,%20Liu&rft.date=2024-07-01&rft.volume=83&rft.issue=25&rft.spage=65773&rft.epage=65788&rft.pages=65773-65788&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-15398-7&rft_dat=%3Cproquest_cross%3E3077578169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077578169&rft_id=info:pmid/&rfr_iscdi=true |