On the construction of the Stokes flow in a domain with cylindrical ends
Based on existence results for the Stokes operator and its solution properties in manifolds with cylindrical ends by Große et al. and Kohr et al., the Stokes flow in a three‐dimensional compact domain Ω+$$ {\Omega}^{+} $$ with circular openings Σj(j=1,2)$$ {\Sigma}_j\...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-08, Vol.47 (12), p.10000-10005 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on existence results for the Stokes operator and its solution properties in manifolds with cylindrical ends by Große et al. and Kohr et al., the Stokes flow in a three‐dimensional compact domain
Ω+$$ {\Omega}^{+} $$ with circular openings
Σj(j=1,2)$$ {\Sigma}_j\kern0.1em \left(j=1,2\right) $$ through which the fluid enters and leaves
Ω+$$ {\Omega}^{+} $$ through unbounded cylindrical pipes the Stokes flow is modeled as a mixed boundary value problem
Ω+$$ {\Omega}^{+} $$ whereas in the cylindrical ends, the velocities and pressures are constant on every straight line in the cylindrical directions with initial values from the openings
Σj$$ {\Sigma}_j $$ of
Ω+$$ {\Omega}^{+} $$. These values equal the velocities and pressures which are obtained from the mixed boundary values' solution in
Ω+$$ {\Omega}^{+} $$ at the openings
Σj$$ {\Sigma}_j $$. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.10106 |