Proof of Zamolodchikov conjecture for semi-classical conformal blocks on the torus

In 1986, Zamolodchikov conjectured an exponential structure for the semi-classical limit of conformal blocks on a sphere. This paper provides a rigorous proof of the analog of Zamolodchikov conjecture for Liouville conformal blocks on a one-punctured torus, using their probabilistic construction and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Desiraju, Harini, Ghosal, Promit, Prokhorov, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Desiraju, Harini
Ghosal, Promit
Prokhorov, Andrei
description In 1986, Zamolodchikov conjectured an exponential structure for the semi-classical limit of conformal blocks on a sphere. This paper provides a rigorous proof of the analog of Zamolodchikov conjecture for Liouville conformal blocks on a one-punctured torus, using their probabilistic construction and show the existence of a positive radius of convergence of the semi-classical limit. As a consequence, we obtain a closed form expression for the solution of the Lamé equation, and show a relation between its accessory parameter and the classical action of the non-autonomous elliptic Calogero-Moser model evaluated at specific values of the solution.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3077526793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077526793</sourcerecordid><originalsourceid>FETCH-proquest_journals_30775267933</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMgWLTvsOC5EBNj9SyKRxFPXkqMKf1Ju5pNfH4j-ADCwAzzzWEmLBNSrortWogZy4k6zrnYlEIpmbHL2SPWkHTTAzp8mKbt8Q0Gx86aEL2FGj2QHdrCOE3UGu2-NLVDSneHpifAEUJjIaCPtGDTWjuy-c_nbHk8XPen4unxFS2FqsPox4QqyctSpS87Kf9bfQA25EBL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077526793</pqid></control><display><type>article</type><title>Proof of Zamolodchikov conjecture for semi-classical conformal blocks on the torus</title><source>Freely Accessible Journals</source><creator>Desiraju, Harini ; Ghosal, Promit ; Prokhorov, Andrei</creator><creatorcontrib>Desiraju, Harini ; Ghosal, Promit ; Prokhorov, Andrei</creatorcontrib><description>In 1986, Zamolodchikov conjectured an exponential structure for the semi-classical limit of conformal blocks on a sphere. This paper provides a rigorous proof of the analog of Zamolodchikov conjecture for Liouville conformal blocks on a one-punctured torus, using their probabilistic construction and show the existence of a positive radius of convergence of the semi-classical limit. As a consequence, we obtain a closed form expression for the solution of the Lamé equation, and show a relation between its accessory parameter and the classical action of the non-autonomous elliptic Calogero-Moser model evaluated at specific values of the solution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Lame functions ; Toruses</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Desiraju, Harini</creatorcontrib><creatorcontrib>Ghosal, Promit</creatorcontrib><creatorcontrib>Prokhorov, Andrei</creatorcontrib><title>Proof of Zamolodchikov conjecture for semi-classical conformal blocks on the torus</title><title>arXiv.org</title><description>In 1986, Zamolodchikov conjectured an exponential structure for the semi-classical limit of conformal blocks on a sphere. This paper provides a rigorous proof of the analog of Zamolodchikov conjecture for Liouville conformal blocks on a one-punctured torus, using their probabilistic construction and show the existence of a positive radius of convergence of the semi-classical limit. As a consequence, we obtain a closed form expression for the solution of the Lamé equation, and show a relation between its accessory parameter and the classical action of the non-autonomous elliptic Calogero-Moser model evaluated at specific values of the solution.</description><subject>Lame functions</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjs0KwjAQhIMgWLTvsOC5EBNj9SyKRxFPXkqMKf1Ju5pNfH4j-ADCwAzzzWEmLBNSrortWogZy4k6zrnYlEIpmbHL2SPWkHTTAzp8mKbt8Q0Gx86aEL2FGj2QHdrCOE3UGu2-NLVDSneHpifAEUJjIaCPtGDTWjuy-c_nbHk8XPen4unxFS2FqsPox4QqyctSpS87Kf9bfQA25EBL</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Desiraju, Harini</creator><creator>Ghosal, Promit</creator><creator>Prokhorov, Andrei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240918</creationdate><title>Proof of Zamolodchikov conjecture for semi-classical conformal blocks on the torus</title><author>Desiraju, Harini ; Ghosal, Promit ; Prokhorov, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30775267933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Lame functions</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Desiraju, Harini</creatorcontrib><creatorcontrib>Ghosal, Promit</creatorcontrib><creatorcontrib>Prokhorov, Andrei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desiraju, Harini</au><au>Ghosal, Promit</au><au>Prokhorov, Andrei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Proof of Zamolodchikov conjecture for semi-classical conformal blocks on the torus</atitle><jtitle>arXiv.org</jtitle><date>2024-09-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In 1986, Zamolodchikov conjectured an exponential structure for the semi-classical limit of conformal blocks on a sphere. This paper provides a rigorous proof of the analog of Zamolodchikov conjecture for Liouville conformal blocks on a one-punctured torus, using their probabilistic construction and show the existence of a positive radius of convergence of the semi-classical limit. As a consequence, we obtain a closed form expression for the solution of the Lamé equation, and show a relation between its accessory parameter and the classical action of the non-autonomous elliptic Calogero-Moser model evaluated at specific values of the solution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3077526793
source Freely Accessible Journals
subjects Lame functions
Toruses
title Proof of Zamolodchikov conjecture for semi-classical conformal blocks on the torus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Proof%20of%20Zamolodchikov%20conjecture%20for%20semi-classical%20conformal%20blocks%20on%20the%20torus&rft.jtitle=arXiv.org&rft.au=Desiraju,%20Harini&rft.date=2024-09-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3077526793%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077526793&rft_id=info:pmid/&rfr_iscdi=true