Proof of Zamolodchikov conjecture for semi-classical conformal blocks on the torus
In 1986, Zamolodchikov conjectured an exponential structure for the semi-classical limit of conformal blocks on a sphere. This paper provides a rigorous proof of the analog of Zamolodchikov conjecture for Liouville conformal blocks on a one-punctured torus, using their probabilistic construction and...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1986, Zamolodchikov conjectured an exponential structure for the semi-classical limit of conformal blocks on a sphere. This paper provides a rigorous proof of the analog of Zamolodchikov conjecture for Liouville conformal blocks on a one-punctured torus, using their probabilistic construction and show the existence of a positive radius of convergence of the semi-classical limit. As a consequence, we obtain a closed form expression for the solution of the Lamé equation, and show a relation between its accessory parameter and the classical action of the non-autonomous elliptic Calogero-Moser model evaluated at specific values of the solution. |
---|---|
ISSN: | 2331-8422 |