Proof of Zamolodchikov conjecture for semi-classical conformal blocks on the torus

In 1986, Zamolodchikov conjectured an exponential structure for the semi-classical limit of conformal blocks on a sphere. This paper provides a rigorous proof of the analog of Zamolodchikov conjecture for Liouville conformal blocks on a one-punctured torus, using their probabilistic construction and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Desiraju, Harini, Ghosal, Promit, Prokhorov, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1986, Zamolodchikov conjectured an exponential structure for the semi-classical limit of conformal blocks on a sphere. This paper provides a rigorous proof of the analog of Zamolodchikov conjecture for Liouville conformal blocks on a one-punctured torus, using their probabilistic construction and show the existence of a positive radius of convergence of the semi-classical limit. As a consequence, we obtain a closed form expression for the solution of the Lamé equation, and show a relation between its accessory parameter and the classical action of the non-autonomous elliptic Calogero-Moser model evaluated at specific values of the solution.
ISSN:2331-8422