Perfect Matching Complexes of Polygonal Line Tiling
The perfect matching complex of a simple graph G is a simplicial complex having facets (maximal faces) as the perfect matchings of G. This article discusses the perfect matching complex of polygonal line tiling and the \(\left(2 \times n\right)\)-grid graph in particular. We use tools from discrete...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The perfect matching complex of a simple graph G is a simplicial complex having facets (maximal faces) as the perfect matchings of G. This article discusses the perfect matching complex of polygonal line tiling and the \(\left(2 \times n\right)\)-grid graph in particular. We use tools from discrete Morse theory to show that the perfect matching complex of any polygonal line tiling is either contractible or homotopically equivalent to a wedge of spheres. While proving our results, we also characterise all the matchings that can not be extended to form a perfect matching. |
---|---|
ISSN: | 2331-8422 |