Perfect Matching Complexes of Polygonal Line Tiling

The perfect matching complex of a simple graph G is a simplicial complex having facets (maximal faces) as the perfect matchings of G. This article discusses the perfect matching complex of polygonal line tiling and the \(\left(2 \times n\right)\)-grid graph in particular. We use tools from discrete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Chandrakar, Himanshu, Singh, Anurag
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The perfect matching complex of a simple graph G is a simplicial complex having facets (maximal faces) as the perfect matchings of G. This article discusses the perfect matching complex of polygonal line tiling and the \(\left(2 \times n\right)\)-grid graph in particular. We use tools from discrete Morse theory to show that the perfect matching complex of any polygonal line tiling is either contractible or homotopically equivalent to a wedge of spheres. While proving our results, we also characterise all the matchings that can not be extended to form a perfect matching.
ISSN:2331-8422