Metal impact and vaporization on the Moon's surface: Nano‐geochemical insights into the source of lunar metals

Millimeter‐to‐nanometer‐sized iron‐ and nickel‐rich metals are ubiquitous on the lunar surface. The proposed origin of these metals falls into two broad classes which should have distinct geochemical signatures—(1) the reduction of iron‐bearing minerals or (2) the addition of metals from meteoritic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2024-07, Vol.59 (7), p.1775-1789
Hauptverfasser: Gopon, Phillip, Douglas, James O., Gardner, Hazel, Moody, Michael P., Wood, Bernard, Halliday, Alexander N., Wade, Jon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Millimeter‐to‐nanometer‐sized iron‐ and nickel‐rich metals are ubiquitous on the lunar surface. The proposed origin of these metals falls into two broad classes which should have distinct geochemical signatures—(1) the reduction of iron‐bearing minerals or (2) the addition of metals from meteoritic sources. The metals measured here from the Apollo 16 regolith possess low Ni (2–6 wt%) and elevated Ge (80–350 ppm) suggesting a meteoritic origin. However, the measured Ni is lower, and the Ge higher than currently known iron meteorites. In comparison to the low Ni iron meteorites, the even lower Ni and higher Ge contents exhibited by these lunar metals are best explained by impact‐driven volatilization and condensation of Ni‐poor meteoritic metal during their impact and addition to the lunar surface. The presence of similar, low Ni‐bearing metals in Apollo return samples from geographically distant sites suggests that this geochemical signature might not be restricted to just the Apollo 16 locality and that volatility‐driven modification of meteoritic metals are a common feature of lunar regolith formation. The possibility of a significant low Ni/high Ge meteoritic component in the lunar regolith, and the observation of chemical fractionation during emplacement, has implications for the interpretation of both lunar remote‐sensing data and bulk geochemical data derived from sample return material. Additionally, our observation of predominantly meteoritic sourced metals has implications for the prevalence of meteoritic addition on airless planetary bodies.
ISSN:1086-9379
1945-5100
DOI:10.1111/maps.14184