On the computation of the gradient in implicit neural networks
Implicit neural networks and the related deep equilibrium models are investigated. To train these networks, the gradient of the corresponding loss function should be computed. Bypassing the implicit function theorem, we develop an explicit representation of this quantity, which leads to an easily ac...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2024, Vol.80 (12), p.17247-17268 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Implicit neural networks and the related deep equilibrium models are investigated. To train these networks, the gradient of the corresponding loss function should be computed. Bypassing the implicit function theorem, we develop an explicit representation of this quantity, which leads to an easily accessible computational algorithm. The theoretical findings are also supported by numerical simulations. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-024-06117-6 |