Tree-based quantum anonymous ranking protocol

We propose an improved quantum anonymous multiparty multidata ranking (QAMMR) protocol based on the binary search tree. In a QAMMR protocol, multiple participants get the ranking of their data without disclosing their identity. It is done with the help of a semi-honest third party (TP), who may try...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2024-07, Vol.23 (7), Article 263
Hauptverfasser: Joseph, Justin, Ali, Syed Taqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an improved quantum anonymous multiparty multidata ranking (QAMMR) protocol based on the binary search tree. In a QAMMR protocol, multiple participants get the ranking of their data without disclosing their identity. It is done with the help of a semi-honest third party (TP), who may try to access others’ data without deviating from the protocol. In existing algorithms, each participant will get to know the count of all data possessed by all participants by the end of the protocol. They are used to calculate the rank of each data each participant possesses. Our protocol achieves the same goal of finding rank with better security and fewer quantum particles. Our protocol determines the rank of a data by disclosing various ranges of data. We use substantially fewer quantum particles to make the protocol more efficient and practically feasible, especially when the range of the data is much higher than the total number of data. Further, we analyze the protocol and prove it is secure against internal and external attacks.
ISSN:1573-1332
1570-0755
1573-1332
DOI:10.1007/s11128-024-04476-w