Critical Behavior of the Stochastic SIR Model on Random Bond-Diluted Lattices
In this paper, we investigate the impact of bond-dilution disorder on the critical behavior of the stochastic SIR model. Monte Carlo simulations were conducted using square lattices with first- and second-nearest neighbor interactions. Quenched bond-diluted lattice disorder was introduced into the s...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2024-06, Vol.191 (6), Article 77 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the impact of bond-dilution disorder on the critical behavior of the stochastic SIR model. Monte Carlo simulations were conducted using square lattices with first- and second-nearest neighbor interactions. Quenched bond-diluted lattice disorder was introduced into the systems, allowing them to evolve over time. By employing percolation theory and finite-size scaling analysis, we estimate both the critical threshold and leading critical exponent ratios of the model for different bond-dilution rates (
p
). An examination of the average size of the percolating cluster and the size distribution of non-percolating clusters of recovered individuals was performed to ascertain the universality class of the model. The simulation results strongly indicate that the present model belongs to a new universality class distinct from that of 2D dynamical percolation, depending on the specific
p
value under consideration. |
---|---|
ISSN: | 1572-9613 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-024-03295-8 |