Enhanced smoke/toxicity suppression of intumescent flame retardant thermoplastic polyurethane composites with the addition of graphene

High flame retardancy with significant suppression of toxic smoke and melt-dripping are challenging issues associated with flame-retardant thermoplastic polyurethane (TPU). To address these issues, in this work, graphene (Gr) was used as an effective two-dimensional smoke-toxicity suppressant with l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian polymer journal 2024, Vol.33 (8), p.1129-1142
Hauptverfasser: Taghi-Akbari, Leila, Naimi-Jamal, Mohammad Reza, Ahmadi, Shervin, Bakhtiyari, Saeed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High flame retardancy with significant suppression of toxic smoke and melt-dripping are challenging issues associated with flame-retardant thermoplastic polyurethane (TPU). To address these issues, in this work, graphene (Gr) was used as an effective two-dimensional smoke-toxicity suppressant with loadings less than 1 wt%, in combination with two efficient intumescent flame retardant (IFR) systems reported in our previous works. The IFRs were consisted of ammonium polyphosphate, pentaerythritol (PER), and melamine polyphosphate (MPP) with MPP:PER ratios of 10:1 (IFR1) and 1:1 (IFR2). Cone calorimeter test (CCT) results showed outstanding flame retardancy and excellent toxic smoke suppression in TPU/IFR1/0.75%Gr sample with reduced peak heat release rate (PHRR) by 85.3%, peak smoke production rate (PSPR) by 92.1%, and peak carbon monoxide production (PCOP) by 91.3% compared with neat TPU. TPU/IFR2/0.5%Gr sample exhibited a similar trend, with the PHRR, PSPR, and PCOP reduced by 66.8%, 62.5%, and 64.0%, respectively, with good anti-dripping property. The barrier function of graphene had a significant influence on reducing total smoke released in TPU/IFR1/0.75%Gr and TPU/IFR2/0.5%Gr samples by 82.1% and 34.3%, respectively, compared with their related TPU/IFRs composites. TPU nanocomposites reached a UL-94 V-0 rating and LOI of more than 29%. TGA results indicated improved char-forming, and FESEM depicted the graphitized integrated char structures. Mechanical performance of TPU/IFR2/0.5%Gr exhibited an enhanced ductility compared with the neat TPU. The possible flame retardancy mechanism was proposed based on the data obtained from the CCT, TGA, and EDS elemental analysis. Graphical abstract
ISSN:1026-1265
1735-5265
DOI:10.1007/s13726-024-01303-y