The extended zero-divisor graph of the amalgamated duplication of a ring along an ideal

Let \(R\) be a commutative ring and \(I\) be an ideal of \(R\). The amalgamated duplication of \(R\) along \(I\) is the subring \(R\Join I:=\{(r,r+i)| r\in R, i\in I\}\) of \(R\times R\). This paper investigates the extended zero-divisor graph of the amalgamated duplication of \(R\) along \(I\). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Brahim El Alaoui, L'hamri, Raja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(R\) be a commutative ring and \(I\) be an ideal of \(R\). The amalgamated duplication of \(R\) along \(I\) is the subring \(R\Join I:=\{(r,r+i)| r\in R, i\in I\}\) of \(R\times R\). This paper investigates the extended zero-divisor graph of the amalgamated duplication of \(R\) along \(I\). The purpose of this work is to study when \(\overline{\Gamma}(R\Join I)\) and \(\Gamma(R\Join I)\) coincide, to characterize when \(\overline{\Gamma}(R\Join I)\) is complete, and to compute the diameter and the girth of \(\overline{\Gamma}(R\Join I)\).
ISSN:2331-8422