The extended zero-divisor graph of the amalgamated duplication of a ring along an ideal
Let \(R\) be a commutative ring and \(I\) be an ideal of \(R\). The amalgamated duplication of \(R\) along \(I\) is the subring \(R\Join I:=\{(r,r+i)| r\in R, i\in I\}\) of \(R\times R\). This paper investigates the extended zero-divisor graph of the amalgamated duplication of \(R\) along \(I\). The...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(R\) be a commutative ring and \(I\) be an ideal of \(R\). The amalgamated duplication of \(R\) along \(I\) is the subring \(R\Join I:=\{(r,r+i)| r\in R, i\in I\}\) of \(R\times R\). This paper investigates the extended zero-divisor graph of the amalgamated duplication of \(R\) along \(I\). The purpose of this work is to study when \(\overline{\Gamma}(R\Join I)\) and \(\Gamma(R\Join I)\) coincide, to characterize when \(\overline{\Gamma}(R\Join I)\) is complete, and to compute the diameter and the girth of \(\overline{\Gamma}(R\Join I)\). |
---|---|
ISSN: | 2331-8422 |