Horizontal Fourier Transform of the Polyanalytic Fock Kernel

Let n , m ≥ 1 and α > 0 . We denote by F α , m the m -analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all m -analytic functions defined on C n and square integrables with respect to the Gaussian weight exp ( - α | z | 2 ) . We study the von Neumann algebra A of bounded linear opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2024-09, Vol.96 (3), Article 22
Hauptverfasser: Lee-Guzmán, Erick, Maximenko, Egor A., Ramos-Vazquez, Gerardo, Sánchez-Nungaray, Armando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Integral equations and operator theory
container_volume 96
creator Lee-Guzmán, Erick
Maximenko, Egor A.
Ramos-Vazquez, Gerardo
Sánchez-Nungaray, Armando
description Let n , m ≥ 1 and α > 0 . We denote by F α , m the m -analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all m -analytic functions defined on C n and square integrables with respect to the Gaussian weight exp ( - α | z | 2 ) . We study the von Neumann algebra A of bounded linear operators acting in F α , m and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of R n . The reproducing kernel of F 1 , m was computed by Youssfi [Polyanalytic reproducing kernels in C n , Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of F α , m by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel K is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of K in the “horizontal direction” and decompose it into the sum of d products of Hermite functions, with d = n + m - 1 n . Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that F α , m is isometrically isomorphic to the space of vector-functions L 2 ( R n ) d , and A is isometrically isomorphic to the algebra of matrix-functions L ∞ ( R n ) d × d .
doi_str_mv 10.1007/s00020-024-02772-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075689105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075689105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-20b4b27833936e4aa433c60d929d89a5d4c076049da0b4269fc2bc13378b3ffa3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeC5-p0kk0a8CKL64oLeljBW0jTRLt2mzXpHurTG63gzcMwMHz_8PMRcl7AZQEgriIAIOSALI0QmMsDMilYOpWylIdkAlSUOUd4OSYnMW4SjQL5hFwvfWg-fdfrNlv4fWhsyNZBd9H5sM28y_o3mz35dtCdboe-MYky79mDDZ1tT8mR0220Z797Sp4Xt-v5Ml893t3Pb1a5QYA-R6hYhaKkVFJumdaMUsOhlijrUupZzQwIDkzWOpHIpTNYmYKmyhV1TtMpuRj_7oL_2NvYq02qmgpFRUHMeCkLmCUKR8oEH2OwTu1Cs9VhUAWob0tqtKSSJfVjSckUomMoJrh7teHv9T-pL424aQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075689105</pqid></control><display><type>article</type><title>Horizontal Fourier Transform of the Polyanalytic Fock Kernel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee-Guzmán, Erick ; Maximenko, Egor A. ; Ramos-Vazquez, Gerardo ; Sánchez-Nungaray, Armando</creator><creatorcontrib>Lee-Guzmán, Erick ; Maximenko, Egor A. ; Ramos-Vazquez, Gerardo ; Sánchez-Nungaray, Armando</creatorcontrib><description>Let n , m ≥ 1 and α &gt; 0 . We denote by F α , m the m -analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all m -analytic functions defined on C n and square integrables with respect to the Gaussian weight exp ( - α | z | 2 ) . We study the von Neumann algebra A of bounded linear operators acting in F α , m and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of R n . The reproducing kernel of F 1 , m was computed by Youssfi [Polyanalytic reproducing kernels in C n , Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of F α , m by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel K is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of K in the “horizontal direction” and decompose it into the sum of d products of Hermite functions, with d = n + m - 1 n . Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that F α , m is isometrically isomorphic to the space of vector-functions L 2 ( R n ) d , and A is isometrically isomorphic to the algebra of matrix-functions L ∞ ( R n ) d × d .</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-024-02772-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Analytic functions ; Fourier transforms ; Hilbert space ; Horizontal orientation ; Invariants ; Linear operators ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Translations</subject><ispartof>Integral equations and operator theory, 2024-09, Vol.96 (3), Article 22</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-20b4b27833936e4aa433c60d929d89a5d4c076049da0b4269fc2bc13378b3ffa3</cites><orcidid>0000-0001-6258-8477 ; 0009-0001-1731-8803 ; 0000-0002-1497-4338 ; 0000-0001-9363-8043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00020-024-02772-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00020-024-02772-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lee-Guzmán, Erick</creatorcontrib><creatorcontrib>Maximenko, Egor A.</creatorcontrib><creatorcontrib>Ramos-Vazquez, Gerardo</creatorcontrib><creatorcontrib>Sánchez-Nungaray, Armando</creatorcontrib><title>Horizontal Fourier Transform of the Polyanalytic Fock Kernel</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>Let n , m ≥ 1 and α &gt; 0 . We denote by F α , m the m -analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all m -analytic functions defined on C n and square integrables with respect to the Gaussian weight exp ( - α | z | 2 ) . We study the von Neumann algebra A of bounded linear operators acting in F α , m and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of R n . The reproducing kernel of F 1 , m was computed by Youssfi [Polyanalytic reproducing kernels in C n , Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of F α , m by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel K is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of K in the “horizontal direction” and decompose it into the sum of d products of Hermite functions, with d = n + m - 1 n . Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that F α , m is isometrically isomorphic to the space of vector-functions L 2 ( R n ) d , and A is isometrically isomorphic to the algebra of matrix-functions L ∞ ( R n ) d × d .</description><subject>Algebra</subject><subject>Analysis</subject><subject>Analytic functions</subject><subject>Fourier transforms</subject><subject>Hilbert space</subject><subject>Horizontal orientation</subject><subject>Invariants</subject><subject>Linear operators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Translations</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeC5-p0kk0a8CKL64oLeljBW0jTRLt2mzXpHurTG63gzcMwMHz_8PMRcl7AZQEgriIAIOSALI0QmMsDMilYOpWylIdkAlSUOUd4OSYnMW4SjQL5hFwvfWg-fdfrNlv4fWhsyNZBd9H5sM28y_o3mz35dtCdboe-MYky79mDDZ1tT8mR0220Z797Sp4Xt-v5Ml893t3Pb1a5QYA-R6hYhaKkVFJumdaMUsOhlijrUupZzQwIDkzWOpHIpTNYmYKmyhV1TtMpuRj_7oL_2NvYq02qmgpFRUHMeCkLmCUKR8oEH2OwTu1Cs9VhUAWob0tqtKSSJfVjSckUomMoJrh7teHv9T-pL424aQ0</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lee-Guzmán, Erick</creator><creator>Maximenko, Egor A.</creator><creator>Ramos-Vazquez, Gerardo</creator><creator>Sánchez-Nungaray, Armando</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6258-8477</orcidid><orcidid>https://orcid.org/0009-0001-1731-8803</orcidid><orcidid>https://orcid.org/0000-0002-1497-4338</orcidid><orcidid>https://orcid.org/0000-0001-9363-8043</orcidid></search><sort><creationdate>20240901</creationdate><title>Horizontal Fourier Transform of the Polyanalytic Fock Kernel</title><author>Lee-Guzmán, Erick ; Maximenko, Egor A. ; Ramos-Vazquez, Gerardo ; Sánchez-Nungaray, Armando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-20b4b27833936e4aa433c60d929d89a5d4c076049da0b4269fc2bc13378b3ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Analytic functions</topic><topic>Fourier transforms</topic><topic>Hilbert space</topic><topic>Horizontal orientation</topic><topic>Invariants</topic><topic>Linear operators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee-Guzmán, Erick</creatorcontrib><creatorcontrib>Maximenko, Egor A.</creatorcontrib><creatorcontrib>Ramos-Vazquez, Gerardo</creatorcontrib><creatorcontrib>Sánchez-Nungaray, Armando</creatorcontrib><collection>CrossRef</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee-Guzmán, Erick</au><au>Maximenko, Egor A.</au><au>Ramos-Vazquez, Gerardo</au><au>Sánchez-Nungaray, Armando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horizontal Fourier Transform of the Polyanalytic Fock Kernel</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>96</volume><issue>3</issue><artnum>22</artnum><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>Let n , m ≥ 1 and α &gt; 0 . We denote by F α , m the m -analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all m -analytic functions defined on C n and square integrables with respect to the Gaussian weight exp ( - α | z | 2 ) . We study the von Neumann algebra A of bounded linear operators acting in F α , m and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of R n . The reproducing kernel of F 1 , m was computed by Youssfi [Polyanalytic reproducing kernels in C n , Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of F α , m by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel K is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of K in the “horizontal direction” and decompose it into the sum of d products of Hermite functions, with d = n + m - 1 n . Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that F α , m is isometrically isomorphic to the space of vector-functions L 2 ( R n ) d , and A is isometrically isomorphic to the algebra of matrix-functions L ∞ ( R n ) d × d .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-024-02772-9</doi><orcidid>https://orcid.org/0000-0001-6258-8477</orcidid><orcidid>https://orcid.org/0009-0001-1731-8803</orcidid><orcidid>https://orcid.org/0000-0002-1497-4338</orcidid><orcidid>https://orcid.org/0000-0001-9363-8043</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-620X
ispartof Integral equations and operator theory, 2024-09, Vol.96 (3), Article 22
issn 0378-620X
1420-8989
language eng
recordid cdi_proquest_journals_3075689105
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Analytic functions
Fourier transforms
Hilbert space
Horizontal orientation
Invariants
Linear operators
Mathematics
Mathematics and Statistics
Operators (mathematics)
Translations
title Horizontal Fourier Transform of the Polyanalytic Fock Kernel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horizontal%20Fourier%20Transform%20of%20the%20Polyanalytic%20Fock%20Kernel&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Lee-Guzm%C3%A1n,%20Erick&rft.date=2024-09-01&rft.volume=96&rft.issue=3&rft.artnum=22&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-024-02772-9&rft_dat=%3Cproquest_cross%3E3075689105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075689105&rft_id=info:pmid/&rfr_iscdi=true