Horizontal Fourier Transform of the Polyanalytic Fock Kernel
Let n , m ≥ 1 and α > 0 . We denote by F α , m the m -analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all m -analytic functions defined on C n and square integrables with respect to the Gaussian weight exp ( - α | z | 2 ) . We study the von Neumann algebra A of bounded linear opera...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2024-09, Vol.96 (3), Article 22 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Integral equations and operator theory |
container_volume | 96 |
creator | Lee-Guzmán, Erick Maximenko, Egor A. Ramos-Vazquez, Gerardo Sánchez-Nungaray, Armando |
description | Let
n
,
m
≥
1
and
α
>
0
. We denote by
F
α
,
m
the
m
-analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all
m
-analytic functions defined on
C
n
and square integrables with respect to the Gaussian weight
exp
(
-
α
|
z
|
2
)
. We study the von Neumann algebra
A
of bounded linear operators acting in
F
α
,
m
and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of
R
n
. The reproducing kernel of
F
1
,
m
was computed by Youssfi [Polyanalytic reproducing kernels in
C
n
, Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of
F
α
,
m
by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel
K
is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of
K
in the “horizontal direction” and decompose it into the sum of
d
products of Hermite functions, with
d
=
n
+
m
-
1
n
. Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that
F
α
,
m
is isometrically isomorphic to the space of vector-functions
L
2
(
R
n
)
d
, and
A
is isometrically isomorphic to the algebra of matrix-functions
L
∞
(
R
n
)
d
×
d
. |
doi_str_mv | 10.1007/s00020-024-02772-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075689105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075689105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-20b4b27833936e4aa433c60d929d89a5d4c076049da0b4269fc2bc13378b3ffa3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeC5-p0kk0a8CKL64oLeljBW0jTRLt2mzXpHurTG63gzcMwMHz_8PMRcl7AZQEgriIAIOSALI0QmMsDMilYOpWylIdkAlSUOUd4OSYnMW4SjQL5hFwvfWg-fdfrNlv4fWhsyNZBd9H5sM28y_o3mz35dtCdboe-MYky79mDDZ1tT8mR0220Z797Sp4Xt-v5Ml893t3Pb1a5QYA-R6hYhaKkVFJumdaMUsOhlijrUupZzQwIDkzWOpHIpTNYmYKmyhV1TtMpuRj_7oL_2NvYq02qmgpFRUHMeCkLmCUKR8oEH2OwTu1Cs9VhUAWob0tqtKSSJfVjSckUomMoJrh7teHv9T-pL424aQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075689105</pqid></control><display><type>article</type><title>Horizontal Fourier Transform of the Polyanalytic Fock Kernel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee-Guzmán, Erick ; Maximenko, Egor A. ; Ramos-Vazquez, Gerardo ; Sánchez-Nungaray, Armando</creator><creatorcontrib>Lee-Guzmán, Erick ; Maximenko, Egor A. ; Ramos-Vazquez, Gerardo ; Sánchez-Nungaray, Armando</creatorcontrib><description>Let
n
,
m
≥
1
and
α
>
0
. We denote by
F
α
,
m
the
m
-analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all
m
-analytic functions defined on
C
n
and square integrables with respect to the Gaussian weight
exp
(
-
α
|
z
|
2
)
. We study the von Neumann algebra
A
of bounded linear operators acting in
F
α
,
m
and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of
R
n
. The reproducing kernel of
F
1
,
m
was computed by Youssfi [Polyanalytic reproducing kernels in
C
n
, Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of
F
α
,
m
by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel
K
is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of
K
in the “horizontal direction” and decompose it into the sum of
d
products of Hermite functions, with
d
=
n
+
m
-
1
n
. Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that
F
α
,
m
is isometrically isomorphic to the space of vector-functions
L
2
(
R
n
)
d
, and
A
is isometrically isomorphic to the algebra of matrix-functions
L
∞
(
R
n
)
d
×
d
.</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-024-02772-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Analytic functions ; Fourier transforms ; Hilbert space ; Horizontal orientation ; Invariants ; Linear operators ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Translations</subject><ispartof>Integral equations and operator theory, 2024-09, Vol.96 (3), Article 22</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-20b4b27833936e4aa433c60d929d89a5d4c076049da0b4269fc2bc13378b3ffa3</cites><orcidid>0000-0001-6258-8477 ; 0009-0001-1731-8803 ; 0000-0002-1497-4338 ; 0000-0001-9363-8043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00020-024-02772-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00020-024-02772-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lee-Guzmán, Erick</creatorcontrib><creatorcontrib>Maximenko, Egor A.</creatorcontrib><creatorcontrib>Ramos-Vazquez, Gerardo</creatorcontrib><creatorcontrib>Sánchez-Nungaray, Armando</creatorcontrib><title>Horizontal Fourier Transform of the Polyanalytic Fock Kernel</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>Let
n
,
m
≥
1
and
α
>
0
. We denote by
F
α
,
m
the
m
-analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all
m
-analytic functions defined on
C
n
and square integrables with respect to the Gaussian weight
exp
(
-
α
|
z
|
2
)
. We study the von Neumann algebra
A
of bounded linear operators acting in
F
α
,
m
and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of
R
n
. The reproducing kernel of
F
1
,
m
was computed by Youssfi [Polyanalytic reproducing kernels in
C
n
, Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of
F
α
,
m
by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel
K
is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of
K
in the “horizontal direction” and decompose it into the sum of
d
products of Hermite functions, with
d
=
n
+
m
-
1
n
. Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that
F
α
,
m
is isometrically isomorphic to the space of vector-functions
L
2
(
R
n
)
d
, and
A
is isometrically isomorphic to the algebra of matrix-functions
L
∞
(
R
n
)
d
×
d
.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Analytic functions</subject><subject>Fourier transforms</subject><subject>Hilbert space</subject><subject>Horizontal orientation</subject><subject>Invariants</subject><subject>Linear operators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Translations</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeC5-p0kk0a8CKL64oLeljBW0jTRLt2mzXpHurTG63gzcMwMHz_8PMRcl7AZQEgriIAIOSALI0QmMsDMilYOpWylIdkAlSUOUd4OSYnMW4SjQL5hFwvfWg-fdfrNlv4fWhsyNZBd9H5sM28y_o3mz35dtCdboe-MYky79mDDZ1tT8mR0220Z797Sp4Xt-v5Ml893t3Pb1a5QYA-R6hYhaKkVFJumdaMUsOhlijrUupZzQwIDkzWOpHIpTNYmYKmyhV1TtMpuRj_7oL_2NvYq02qmgpFRUHMeCkLmCUKR8oEH2OwTu1Cs9VhUAWob0tqtKSSJfVjSckUomMoJrh7teHv9T-pL424aQ0</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lee-Guzmán, Erick</creator><creator>Maximenko, Egor A.</creator><creator>Ramos-Vazquez, Gerardo</creator><creator>Sánchez-Nungaray, Armando</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6258-8477</orcidid><orcidid>https://orcid.org/0009-0001-1731-8803</orcidid><orcidid>https://orcid.org/0000-0002-1497-4338</orcidid><orcidid>https://orcid.org/0000-0001-9363-8043</orcidid></search><sort><creationdate>20240901</creationdate><title>Horizontal Fourier Transform of the Polyanalytic Fock Kernel</title><author>Lee-Guzmán, Erick ; Maximenko, Egor A. ; Ramos-Vazquez, Gerardo ; Sánchez-Nungaray, Armando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-20b4b27833936e4aa433c60d929d89a5d4c076049da0b4269fc2bc13378b3ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Analytic functions</topic><topic>Fourier transforms</topic><topic>Hilbert space</topic><topic>Horizontal orientation</topic><topic>Invariants</topic><topic>Linear operators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee-Guzmán, Erick</creatorcontrib><creatorcontrib>Maximenko, Egor A.</creatorcontrib><creatorcontrib>Ramos-Vazquez, Gerardo</creatorcontrib><creatorcontrib>Sánchez-Nungaray, Armando</creatorcontrib><collection>CrossRef</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee-Guzmán, Erick</au><au>Maximenko, Egor A.</au><au>Ramos-Vazquez, Gerardo</au><au>Sánchez-Nungaray, Armando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horizontal Fourier Transform of the Polyanalytic Fock Kernel</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>96</volume><issue>3</issue><artnum>22</artnum><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>Let
n
,
m
≥
1
and
α
>
0
. We denote by
F
α
,
m
the
m
-analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all
m
-analytic functions defined on
C
n
and square integrables with respect to the Gaussian weight
exp
(
-
α
|
z
|
2
)
. We study the von Neumann algebra
A
of bounded linear operators acting in
F
α
,
m
and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of
R
n
. The reproducing kernel of
F
1
,
m
was computed by Youssfi [Polyanalytic reproducing kernels in
C
n
, Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of
F
α
,
m
by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel
K
is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of
K
in the “horizontal direction” and decompose it into the sum of
d
products of Hermite functions, with
d
=
n
+
m
-
1
n
. Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that
F
α
,
m
is isometrically isomorphic to the space of vector-functions
L
2
(
R
n
)
d
, and
A
is isometrically isomorphic to the algebra of matrix-functions
L
∞
(
R
n
)
d
×
d
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-024-02772-9</doi><orcidid>https://orcid.org/0000-0001-6258-8477</orcidid><orcidid>https://orcid.org/0009-0001-1731-8803</orcidid><orcidid>https://orcid.org/0000-0002-1497-4338</orcidid><orcidid>https://orcid.org/0000-0001-9363-8043</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-620X |
ispartof | Integral equations and operator theory, 2024-09, Vol.96 (3), Article 22 |
issn | 0378-620X 1420-8989 |
language | eng |
recordid | cdi_proquest_journals_3075689105 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Analytic functions Fourier transforms Hilbert space Horizontal orientation Invariants Linear operators Mathematics Mathematics and Statistics Operators (mathematics) Translations |
title | Horizontal Fourier Transform of the Polyanalytic Fock Kernel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horizontal%20Fourier%20Transform%20of%20the%20Polyanalytic%20Fock%20Kernel&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Lee-Guzm%C3%A1n,%20Erick&rft.date=2024-09-01&rft.volume=96&rft.issue=3&rft.artnum=22&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-024-02772-9&rft_dat=%3Cproquest_cross%3E3075689105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075689105&rft_id=info:pmid/&rfr_iscdi=true |