Horizontal Fourier Transform of the Polyanalytic Fock Kernel
Let n , m ≥ 1 and α > 0 . We denote by F α , m the m -analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all m -analytic functions defined on C n and square integrables with respect to the Gaussian weight exp ( - α | z | 2 ) . We study the von Neumann algebra A of bounded linear opera...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2024-09, Vol.96 (3), Article 22 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
n
,
m
≥
1
and
α
>
0
. We denote by
F
α
,
m
the
m
-analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all
m
-analytic functions defined on
C
n
and square integrables with respect to the Gaussian weight
exp
(
-
α
|
z
|
2
)
. We study the von Neumann algebra
A
of bounded linear operators acting in
F
α
,
m
and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of
R
n
. The reproducing kernel of
F
1
,
m
was computed by Youssfi [Polyanalytic reproducing kernels in
C
n
, Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of
F
α
,
m
by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel
K
is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of
K
in the “horizontal direction” and decompose it into the sum of
d
products of Hermite functions, with
d
=
n
+
m
-
1
n
. Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that
F
α
,
m
is isometrically isomorphic to the space of vector-functions
L
2
(
R
n
)
d
, and
A
is isometrically isomorphic to the algebra of matrix-functions
L
∞
(
R
n
)
d
×
d
. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-024-02772-9 |