Selenopeptide nanomedicine ameliorates atherosclerosis by reducing monocyte adhesions and inflammations
Atherosclerosis is an inflammatory disease that may cause severe heart disease and stroke. Current pharmacotherapy for atherosclerosis shows limited benefits. In the progression of atherosclerosis, monocyte adhesions and inflammatory macrophages play vital roles. However, precise regulations of infl...
Gespeichert in:
Veröffentlicht in: | Nano research 2024-07, Vol.17 (7), p.6332-6341 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atherosclerosis is an inflammatory disease that may cause severe heart disease and stroke. Current pharmacotherapy for atherosclerosis shows limited benefits. In the progression of atherosclerosis, monocyte adhesions and inflammatory macrophages play vital roles. However, precise regulations of inflammatory immune microenvironments in pathological tissues remain challenging. Here, we report an atherosclerotic plaque-targeted selenopeptide nanomedicine for inhibiting atherosclerosis progression by reducing monocyte adhesions and inflammation of macrophages. The targeted nanomedicine has 2.2-fold enhancement in atherosclerotic lesion accumulation. The oxidation-responsibility of selenopeptide enables eliminations of reactive oxygen species and specific release of anti-inflammatory drugs, thereby reducing inflammation responses of macrophages. Notably, we find the oxidative metabolite of selenopeptide, octadecyl selenite, can bind to P-selectin in a high affinity with a dissociation constant of 1.5 µM. This
in situ
generated active seleno-species further inhibit monocyte adhesions for anti-inflammation in synergy. With local regulations of monocyte adhesions and inflammations, the selenopeptide nanomedicine achieves 2.6-fold improvement in atherosclerotic plaque inhibition compared with simvastatin in the atherosclerosis mouse model. Meanwhile, the selenopeptide nanomedicine also displays excellent biological safety in both mice and rhesus monkeys. This study provides a safe and effective platform for regulating inflammatory immune microenvironments for inflammatory diseases such as atherosclerosis. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-024-6547-z |