Soft multifunctional neurological electronic skin through intrinsically stretchable synaptic transistor

Neurological electronic skin (E-skin) can process and transmit information in a distributed manner that achieves effective stimuli perception, holding great promise in neuroprosthetics and soft robotics. Neurological E-skin with multifunctional perception abilities can enable robots to precisely int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2024-07, Vol.17 (7), p.6550-6559
Hauptverfasser: Zhu, Pengcheng, Mu, Shuairong, Huang, Wenhao, Sun, Zeye, Lin, Yuyang, Chen, Ke, Pan, Zhifeng, Haghighi, Mohsen Golbon, Sedghi, Roya, Wang, Junlei, Mao, Yanchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurological electronic skin (E-skin) can process and transmit information in a distributed manner that achieves effective stimuli perception, holding great promise in neuroprosthetics and soft robotics. Neurological E-skin with multifunctional perception abilities can enable robots to precisely interact with the complex surrounding environment. However, current neurological E-skins that possess tactile, thermal, and visual perception abilities are usually prepared with rigid materials, bringing difficulties in realizing biologically synapse-like softness. Here, we report a soft multifunctional neurological E-skin (SMNE) comprised of a poly(3-hexylthiophene) (P3HT) nanofiber polymer semiconductor-based stretchable synaptic transistor and multiple soft artificial sensory receptors, which is capable of effectively perceiving force, thermal, and light stimuli. The stretchable synaptic transistor can convert electrical signals into transient channel currents analogous to the biological excitatory postsynaptic currents. And it also possesses both short-term and long-term synaptic plasticity that mimics the human memory system. By integrating a stretchable triboelectric nanogenerator, a soft thermoelectric device, and an elastic photodetector as artificial receptors, we further developed an SMNE that enables the robot to make precise actions in response to various surrounding stimuli. Compared with traditional neurological E-skin, our SMNE can maintain the softness and adaptability of biological synapses while perceiving multiple stimuli including force, temperature, and light. This SMNE could promote the advancement of E-skins for intelligent robot applications.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-024-6566-8