Mid-Infrared Hyperspectral Microscopy with Broadband 1-GHz Dual Frequency Combs

Mid-infrared microscopy is an important tool for biological analyses, allowing a direct probe of molecular bonds in their low energy landscape. In addition to the label-free extraction of spectroscopic information, the application of broadband sources can provide a third dimension of chemical specif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Chang, Peter, Ishrak, Ragib, Hoghooghi, Nazanin, Egbert, Scott, Lesko, Daniel, Swartz, Stephanie, Biegert, Jens, Rieker, Gregory B, Reddy, Rohith, Diddams, Scott A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mid-infrared microscopy is an important tool for biological analyses, allowing a direct probe of molecular bonds in their low energy landscape. In addition to the label-free extraction of spectroscopic information, the application of broadband sources can provide a third dimension of chemical specificity. However, to enable widespread deployment, mid-infrared microscopy platforms need to be compact and robust while offering high speed, broad bandwidth and high signal-to-noise ratio (SNR). In this study, we experimentally showcase the integration of a broadband, high-repetition-rate dual-comb spectrometer (DCS) in the mid-infrared range with a scanning microscope. We employ a set of 1-GHz mid-infrared frequency combs, demonstrating their capability for high-speed and broadband hyperspectral imaging of polymers and ovarian tissue. The system covers 1000 \(\mathrm{cm^{-1}}\) at \(\mathrm{\nu_c=2941 \; cm^{-1}}\) with 12.86 kHz spectra acquisition rate and 5 \(\mathrm{\mu m}\) spatial resolution. Taken together, our experiments and analysis elucidate the trade-off between bandwidth and speed in DCS as it relates to microscopy. This provides a roadmap for the future advancement and application of high-repetition-rate DCS hyperspectral imaging.
ISSN:2331-8422