Saving Private WAN: Using Internet Paths to Offload WAN Traffic in Conferencing Services
Large-scale video conferencing services incur significant network cost while serving surging global demands. Our work systematically explores the opportunity to offload a fraction of this traffic to the Internet, a cheaper routing option offered already by cloud providers, from WAN without drop in a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large-scale video conferencing services incur significant network cost while serving surging global demands. Our work systematically explores the opportunity to offload a fraction of this traffic to the Internet, a cheaper routing option offered already by cloud providers, from WAN without drop in application performance. First, with a large-scale latency measurement study with 3.5 million data points per day spanning 241K source cities and 21 data centers across the globe, we demonstrate that Internet paths perform comparable to or better than the private WAN for parts of the world (e.g., Europe and North America). Next, we present Titan, a live (12+ months) production system that carefully moves a fraction of the conferencing traffic to the Internet using the above observation. Finally, we propose Titan-Next, a research prototype that jointly assigns the conferencing server and routing option (Internet or WAN) for individual calls. With 5 weeks of production data, we show Titan-Next reduces the sum of peak bandwidth on WAN links that defines the operational network cost by up to 61% compared to state-of-the-art baselines. We will open-source parts of the measurement data. |
---|---|
ISSN: | 2331-8422 |