Toward Robust Robot 3-D Perception in Urban Environments: The UT Campus Object Dataset

We introduce the UT Campus Object Dataset (CODa), a mobile robot egocentric perception dataset collected on the University of Texas Austin Campus. Our dataset contains 8.5 h of multimodal sensor data from 3-D light detection and ranging (LiDAR), stereo RGB and rgb and depth (RGBD) cameras, and a 9-D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2024, Vol.40, p.3322-3340
Hauptverfasser: Zhang, Arthur, Eranki, Chaitanya, Zhang, Christina, Park, Ji-Hwan, Hong, Raymond, Kalyani, Pranav, Kalyanaraman, Lochana, Gamare, Arsh, Bagad, Arnav, Esteva, Maria, Biswas, Joydeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the UT Campus Object Dataset (CODa), a mobile robot egocentric perception dataset collected on the University of Texas Austin Campus. Our dataset contains 8.5 h of multimodal sensor data from 3-D light detection and ranging (LiDAR), stereo RGB and rgb and depth (RGBD) cameras, and a 9-DoF inertial measurement unit (IMU). CODa contains 58 min of ground truth annotations containing 1.3 million 3-D bounding boxes with instance identifiers (ID) for 53 semantic classes, 5000 frames of 3-D semantic annotations for urban terrain, and pseudoground truth localization. We repeatedly traverse identical geographic regions for diverse indoor and outdoor areas, weather conditions, and times of the day. Using CODa, we empirically demonstrate that: 1) 3-D object detection performance improves in urban settings when trained using CODa compared with existing datasets, 2) sensor-specific fine-tuning increases 3-D object detection accuracy, and 3) pretraining on CODa improves cross-dataset 3-D object detection performance in urban settings compared with pretraining on AV datasets. We release benchmarks for 3-D object detection and 3-D semantic segmentation, with future plans for additional tasks. We publicly release CODa on the Texas Data Repository (Zhang et al., 2023), pretrained models, dataset development package, and interactive dataset viewer. We expect CODa to be a valuable dataset for egocentric perception and planning for navigation in urban environments.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2024.3400831