FTMMR: Fusion Transformer for Integrating Multiple Molecular Representations

Molecular property prediction has gained substantial attention due to its potential for various bio-chemical applications. Numerous attempts have been made to enhance the performance by combining multiple molecular representations (1D, 2D, and 3D). However, most prior works only merged a limited num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-07, Vol.28 (7), p.4361-4372
Hauptverfasser: Son, Young-Han, Shin, Dong-Hee, Kam, Tae-Eui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular property prediction has gained substantial attention due to its potential for various bio-chemical applications. Numerous attempts have been made to enhance the performance by combining multiple molecular representations (1D, 2D, and 3D). However, most prior works only merged a limited number of representations or tried to embed multiple representations through a single network without using representation-specific networks. Furthermore, the heterogeneous characteristics of each representation made the fusion more challenging. Addressing these challenges, we introduce the Fusion Transformer for Multiple Molecular Representations (FTMMR) framework. Our strategy employs three distinct representation-specific networks and integrates information from each network using a fusion transformer architecture to generate fused representations. Additionally, we use self-supervised learning methods to align heterogeneous representations and to effectively utilize the limited chemical data available. In particular, we adopt a combinatorial loss function to leverage the contrastive loss for all three representations. We evaluate the performance of FTMMR using seven benchmark datasets, demonstrating that our framework outperforms existing fusion and self-supervised methods.
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2024.3383221