Reaction-diffusion systems in annular domains: source stability estimates with boundary observations
We consider systems of reaction-diffusion equations coupled in zero order terms, with general homogeneous boundary conditions in domains with a particular geometry (annular type domains). We establish Lipschitz stability estimates in L^2 norm for the source in terms of the solution and/or its normal...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider systems of reaction-diffusion equations coupled in zero order terms, with general homogeneous boundary conditions in domains with a particular geometry (annular type domains). We establish Lipschitz stability estimates in L^2 norm for the source in terms of the solution and/or its normal derivative on a connected component of the boundary. The main tools are represented by: appropriate Carleman estimates in L^2 norms, with boundary observations, and positivity improving properties for the solutions to parabolic equations and systems. |
---|---|
ISSN: | 2331-8422 |