Reaction-diffusion systems in annular domains: source stability estimates with boundary observations

We consider systems of reaction-diffusion equations coupled in zero order terms, with general homogeneous boundary conditions in domains with a particular geometry (annular type domains). We establish Lipschitz stability estimates in L^2 norm for the source in terms of the solution and/or its normal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Catalin-George Lefter, Elena-Alexandra Melnig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider systems of reaction-diffusion equations coupled in zero order terms, with general homogeneous boundary conditions in domains with a particular geometry (annular type domains). We establish Lipschitz stability estimates in L^2 norm for the source in terms of the solution and/or its normal derivative on a connected component of the boundary. The main tools are represented by: appropriate Carleman estimates in L^2 norms, with boundary observations, and positivity improving properties for the solutions to parabolic equations and systems.
ISSN:2331-8422