Machine Learning Models for Dengue Forecasting in Singapore
With emerging prevalence beyond traditionally endemic regions, the global burden of dengue disease is forecasted to be one of the fastest growing. With limited direct treatment or vaccination currently available, prevention through vector control is widely believed to be the most effective form of m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With emerging prevalence beyond traditionally endemic regions, the global burden of dengue disease is forecasted to be one of the fastest growing. With limited direct treatment or vaccination currently available, prevention through vector control is widely believed to be the most effective form of managing outbreaks. This study examines traditional state space models (moving average, autoregressive, ARIMA, SARIMA), supervised learning techniques (XGBoost, SVM, KNN) and deep networks (LSTM, CNN, ConvLSTM) for forecasting weekly dengue cases in Singapore. Meteorological data and search engine trends were included as features for ML techniques. Forecasts using CNNs yielded lowest RMSE in weekly cases in 2019. |
---|---|
ISSN: | 2331-8422 |