Estimating the entropy of a Rayleigh model under progressive first-failure censoring
Based on a progressive first-failure censoring (PFFC) sample, we discuss the statistical inferences of the entropy of a Rayleigh distribution. In particular, the Maximum likelihood and the different Bayes estimates for entropy are derived and compared via a Monte Carlo simulation study. Bayes estima...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2024-07, Vol.65 (5), p.3135-3154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on a progressive first-failure censoring (PFFC) sample, we discuss the statistical inferences of the entropy of a Rayleigh distribution. In particular, the Maximum likelihood and the different Bayes estimates for entropy are derived and compared via a Monte Carlo simulation study. Bayes estimators are developed using both symmetric and asymmetric loss functions. Approximate confidence intervals (CIs) and credible intervals (CrIs) of the entropy of the model are also performed. Numerical examples and a real data set are given to illustrate the proposed estimators. |
---|---|
ISSN: | 0932-5026 1613-9798 |
DOI: | 10.1007/s00362-023-01508-y |