YuLan: An Open-source Large Language Model

Large language models (LLMs) have become the foundation of many applications, leveraging their extensive capabilities in processing and understanding natural language. While many open-source LLMs have been released with technical reports, the lack of training details hinders further research and dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Zhu, Yutao, Zhou, Kun, Mao, Kelong, Chen, Wentong, Sun, Yiding, Chen, Zhipeng, Cao, Qian, Wu, Yihan, Chen, Yushuo, Wang, Feng, Zhang, Lei, Li, Junyi, Wang, Xiaolei, Wang, Lei, Zhang, Beichen, Dong, Zican, Cheng, Xiaoxue, Chen, Yuhan, Tang, Xinyu, Hou, Yupeng, Ren, Qiangqiang, Pang, Xincheng, Xie, Shufang, Wayne Xin Zhao, Dou, Zhicheng, Mao, Jiaxin, Lin, Yankai, Song, Ruihua, Xu, Jun, Chen, Xu, Yan, Rui, Wei, Zhewei, Hu, Di, Huang, Wenbing, Ze-Feng Gao, Chen, Yueguo, Lu, Weizheng, Ji-Rong, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large language models (LLMs) have become the foundation of many applications, leveraging their extensive capabilities in processing and understanding natural language. While many open-source LLMs have been released with technical reports, the lack of training details hinders further research and development. This paper presents the development of YuLan, a series of open-source LLMs with \(12\) billion parameters. The base model of YuLan is pre-trained on approximately \(1.7\)T tokens derived from a diverse corpus, including massive English, Chinese, and multilingual texts. We design a three-stage pre-training method to enhance YuLan's overall capabilities. Subsequent phases of training incorporate instruction-tuning and human alignment, employing a substantial volume of high-quality synthesized data. To facilitate the learning of complex and long-tail knowledge, we devise a curriculum-learning framework throughout across these stages, which helps LLMs learn knowledge in an easy-to-hard manner. YuLan's training is finished on Jan, 2024 and has achieved performance on par with state-of-the-art LLMs across various English and Chinese benchmarks. This paper outlines a comprehensive technical roadmap for developing LLMs from scratch. Our model and codes are available at https://github.com/RUC-GSAI/YuLan-Chat.
ISSN:2331-8422