Physicochemical graph neural network for learning protein–ligand interaction fingerprints from sequence data
In drug discovery, determining the binding affinity and functional effects of small-molecule ligands on proteins is critical. Current computational methods can predict these protein–ligand interaction properties but often lose accuracy without high-resolution protein structures and falter in predict...
Gespeichert in:
Veröffentlicht in: | Nature machine intelligence 2024-06, Vol.6 (6), p.673-687 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In drug discovery, determining the binding affinity and functional effects of small-molecule ligands on proteins is critical. Current computational methods can predict these protein–ligand interaction properties but often lose accuracy without high-resolution protein structures and falter in predicting functional effects. Here we introduce PSICHIC (PhySIcoCHemICal graph neural network), a framework incorporating physicochemical constraints to decode interaction fingerprints directly from sequence data alone. This enables PSICHIC to attain capabilities in decoding mechanisms underlying protein–ligand interactions, achieving state-of-the-art accuracy and interpretability. Trained on identical protein–ligand pairs without structural data, PSICHIC matched and even surpassed leading structure-based methods in binding-affinity prediction. In an experimental library screening for adenosine A
1
receptor agonists, PSICHIC discerned functional effects effectively, ranking the sole novel agonist within the top three. PSICHIC’s interpretable fingerprints identified protein residues and ligand atoms involved in interactions, and helped in unveiling selectivity determinants of protein–ligand interaction. We foresee PSICHIC reshaping virtual screening and deepening our understanding of protein–ligand interactions.
Predicting the binding affinity between small-molecule ligands and proteins is a key task in drug discovery; however, sequence-based methods are often less accurate than structure-based ones. Koh et al. develop a graph neural network using physicochemical constraints that discovers interactions between small molecules and proteins directly from sequence data and that can achieve state-of-the-art performance without the need for costly, experimental 3D structures. |
---|---|
ISSN: | 2522-5839 2522-5839 |
DOI: | 10.1038/s42256-024-00847-1 |