A finiteness condition for complex continued fraction algorithms

It is desirable that a given continued fraction algorithm is simple in the sense that the possible representations can be characterized in an easy way. In this context the so-called finite range condition plays a prominent role. We show that this condition holds for complex \(\boldsymbol{\alpha}\)-H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Kalle, Charlene, Sélley, Fanni M, Thuswaldner, Jörg M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is desirable that a given continued fraction algorithm is simple in the sense that the possible representations can be characterized in an easy way. In this context the so-called finite range condition plays a prominent role. We show that this condition holds for complex \(\boldsymbol{\alpha}\)-Hurwitz algorithms with parameters \(\boldsymbol{\alpha}\in\mathbb{Q}^2\). This is equivalent to the existence of certain finite partitions related to these algorithms and lies at the root of explorations into their Diophantine properties. Our result provides a partial answer to a recent question formulated by Lukyanenko and Vandehey.
ISSN:2331-8422